IMPROVING PRODUCTIVITY IN PROCESSING OPERATIONS

NOVEMBER 2015

ANGLOGOLDASHANTI

INTERNATIONAL REGION NICK CLARKE

OUTLINE

AGA - WHAT WE ARE

Diversified Gold Mining Company Operating 19 Mines in:

What We Were

- Long-life, generally mature, gold mines
- Good cash flow but relatively
 high costs
- Average AISC gold production cost in 2013 was US\$1227/oz

Where We Are

- Costs reduced and margins
 improved
- International operations now in lowest quartile AISC
- Working to create further value
- Maintain options to grow

IMPROVEMENTS ON INDUSTRY ALL-IN SUSTAINING COSTS

We are making systemic changes to our cost structure...

...working our way down the industry cost curve.

PRODUCTIVITY STRATEGIES AND COST REDUCTION METHODS

Existing Mines

- Project 500
- Example Sunrise Dam

New Mines

- Tropicana Focus on Energy
- Gramalote Innovative design

Technology Enabler

• Sorter evolution

1. INNOVATIONS FOR EXISTING MINES

Business Drivers for Change

Priorities changed after 2013 Gold price slump

High Cost of existing mines

Global Business Imperative

- Sustainably reduce costs at existing mines
- Cut \$500m out of the business

1. INNOVATIONS FOR EXISTING MINES

How productivity and cost reductions were achieved:

1. INNOVATIONS FOR EXISTING MINES

One Page Charter per Initiative

But accountability stays with the Site

Reducing Reagent Consumption Costs at Sunrise Dam

Opportunity Identification

- Sunrise Dam is a mature operation under good control limits opportunities
- But, process water is hypersaline
- Identified potential to reduce lime and cyanide consumption by maximising use of a new borefield supplying better quality water
- Savings possibly A\$1 2 M/year

믭																			
	А			D					I				М		0		Q		
	ReportDate	Shift	ActualDate	MillMoistu	GrindSize	PotableW	PotableW	PotableW	PotableW	upsize_ts	PmpPot	PmpPot	Process	Process	Process	Process	Process	Process	Tail
				re		aterCL_A	aterCL_P	aterPH_A	aterPH_P		WaterCL_	WaterCL_	WaterSG	WaterSG	WaterSG	WaterSG	WaterNa	WaterpH	
1	4 1 1 42		4 1 1 42	0.700047	74 70000	M 0.7	M	M	M		AM	PM 0.0	4.440	2	3	4	CN	0.40	
2	1-JUI-13		1-JUI-13	0.780617	/1./6938	0.7	0.8	5.30	5.97		U.7	0.8	1.116	4.445			11	0.10	
	1-Jul-13		2-Jul-13	1.108902	69.26829	0 7	0	0	0		0.7	0.0	4 405	1.115	1.111	1.11	0	7.07	
4	2-Jul-13		2-Jul-13	0.927188	82.90258	0.7	0.6	5.35	6.37		U.7	0.6	1.105		4 000		9	1.91	
	2-Jul-13	S N	3-Jul-13	0.75431	68.10176	0	0	0	0					1.1	1.098	1.1			
	3-Jul-13		3-Jul-13	0.413/4/	70.98704	0.8	1	5.32	6.33		0.8	1	1.099				11	8.31	
7	3-Jul-13	3 N	4-Jul-13	0.871898	68.79362	0	0	0	0					1.095	1.096	1.09			
	4-Jul-13	3 D	4-Jul-13	0.788042	69.44444	0.4	0.8	5.53	5.41		0.4	0.8	1.098				16	8.23	
	4-Jul-13	3 N	5-Jul-13	0.789982	68.98608	0	0	0	0					1.095	1.079	1.098			
10	5-Jul-13	3 D	5-Jul-13	0.705405	65.33865	0.6	0.5	5.08	5.46		0.6	0.5	1.107				15	7.9	
11	5-Jul-13	3 N	6-Jul-13	0.707399	67.92453	0	0	0	0					1.098	1.095	1.098			
12	6-Jul-13	B D	6-Jul-13	1.050551	64.3	0.6	0.6	5.13	5.51		0.6	0.6	1.113				8.5	8.26	
13	6-Jul-13	8 N	7-Jul-13	1.146985	62.5498	0	0	0	0					1.113	1.109	1.112			
14	7-Jul-13	B D	7-Jul-13	1.187387	68.85572	0.8	0.7	5.2	5.49		0.8	0.7	1.106				9	8.36	
15	7-Jul-13	8 N	8-Jul-13	0.951954	71.41434	0	0	0	0					1.106	1.099	1.081			
16	8-Jul-13	B D	8-Jul-13	0.756231	67.63237	1	0.8	5.3	5.38		1	0.8	1.105				12	8.36	
17	8-Jul-13	8 N	9-Jul-13	0.77287	66.23506	0	0	0	0					1.105	1.089	1.105			
18	9-Jul-13	B D	9-Jul-13	0.567295	68.29026	0.8	1	4.99	5.31		0.8	1	1.101				15	5	
19	9-Jul-13	8 N	10-Jul-13	1.148437	68.78728	0	0	0	0					1.101	1.101	1.102			
	10-Jul-13	B D	10-Jul-13	1.2493	68.6	1	1	5.38	5.25		1	1	1.127				30	8.04	
21	10-Jul-13	3 N	11-Jul-13	1.211923	71.57058	0	0	0	0					1.127	1.096	1.125			
22	11-Jul-13	B D	11-Jul-13	0.692898	73.77866	1	1	5.16	5.65		1	1	1.12				28	8.18	
23	11-Jul-13	3 N	12-Jul-13	0.522611	75.89641	0	0	0	0					1.12	1.103	1.12			
24	12-Jul-13	B D	12-Jul-13	0.688603	73.18769	0.7	1	4.81	4.81		0.7	1	1.128				11	8.03	
25	12-Jul-13	8 N	13-Jul-13	0.399893	78.82118	0	0	0	0					1.128	1.098	1.128			
	13-Jul-13	B D	13-Jul-13	0.624059	74.28571	1	1	5.52	5.74		1	1	1.11				14	8.6	
27	13-Jul-13	8 N	14-Jul-13	0.586301	83.10277	0	0	0	0					1.11	1.101	1.11			
28	14-Jul-13	B D	14-Jul-13	1.001252	73.24778	1	1	5.09	5.8		1	1	1.106				6	7.88	
29	14-Jul-13	8 N	15-Jul-13	0.704148	71.556	0	0	0	0					1.106	1.095	1.106			
30	15-Jul-13	B D	15-Jul-13	0.41234	71.54229	1	1	5.1	5.51		1	1	1.106				17	8.5	
31	15-Jul-13	3 N	16-Jul-13	0.485774	74.13623	0	0	0	0					1.106	1.09	1.106			
32	16-Jul-13	B D	16-Jul-13	0.623004	72.7	1	1	5.27	5.54		1	1	1.112				9	8.54	
33	16-Jul-13	3 N	17-Jul-13	0.568797	69.69093	0	0	0	0					1.112	1.088	1.112			-
34	17-Jul-13	B D	17-Jul-13	0.831458	64.1635	1	1	5.12	5.46		1	1	1.112				9	8.42	
35	17-Jul-13	8 N	18-Jul-13	1.079754	67.52221	0	0	0	0					1,112	1.095	1,112			-
36	18-Jul-13	B D	18-Jul-13	0.495418	66,79803	07	07	5.77	5.61		07	07	1,111				10	8,25	-
	40 1 1 40		40.1.40	0 700004	74 0000		0.1				2.1	2.1		4 400	4 000	4 400		0.20	

Reducing Reagent Consumption Costs at Sunrise Dam

Investigation

- Statistical analysis of comprehensive plant production records
- Laboratory test work on site
- Inspect the water supply system and review permits

Reducing Reagent Consumption Costs at Sunrise Dam

Findings – The Borefield

- Designed to dewater a new pit so "excess" water was discharged
- Pump records showed capable of >1 GL/y
- Permitted and sustainable to 1 GL/y
- Dissolved solids in process water reduced 15% by maximising rate

Reducing Reagent Consumption Costs at Sunrise Dam

- Maximising GD water reduced lime by 1.3 kg/t
- Value attributable to Project 500 is \$0.5 M/y
- Cyanide consumption also reduced

Reducing Reagent Consumption Costs at Sunrise Dam

- Plant data shows increasing salinity reduces gold recovery
- Lab testing confirmed:
 - 65% recovery (of gravity tail) in potable water or sodium chloride solution
 - 59% in process or pit water
- Suggests it is the calcium and magnesium which reduce recovery

Reducing Reagent Consumption Costs at Sunrise Dam

- Nanofiltration can remove calcium and magnesium
- Potential 2 4% recovery improvement, or ~A\$10 M/y
- Maximising GD water already achieved some improvement

ANGLOGOLDASHANTI

PRODUCTIVITY STRATEGIES AND COST REDUCTION METHODS

Euriadia a Mir

Project 500

Example Sunrise
 Dam

New Mines

- Tropicana Focus on Energy
- Gramolote Innovative design

Fechnology EnablerSorter evolution

Business Drivers for Change

- Hard ore and high energy costs
- Design focus on reducing energy consumption (but power is still 50% of processing costs)

How productivity and cost reductions were achieved:

Comminution Circuit Evaluation

- Identify all technically feasible comminution options
- Develop conceptual designs from bench scale testing
- Estimate conceptual operating and capital costs

Comparative costs are quite precise although absolute imprecise

How productivity and cost reductions were achieved:

Optimum Comminution Circuit

- All options higher NPV than "standard" SABC (SAG + Ball + Pebble Crusher)
- Highest NPV High Pressure Grinding Rolls (HPGR)
 + Pebble Mill
- Next best HPGR + Ball

HPGR-Ball selected – ore variability risk with pebble mill

Option (150 µm grind)	Comparative NPV
Single stage SAG	1
HPGR-Ball	40
HPGR-Pebble	49
AG-Pebble	NA
Tertiary Crush-Ball	22

How productivity and cost reductions were achieved:

HPGR CIRCUIT CHALLENGES OVERCOME

- **Pilot** HPGR testwork showed fines production less than expected
- To maintain HPGR cost benefit...had to do a bigger share of the work
- Required relatively fine wet screening

With wet screening – no break in the chain from crusher to tails

How productivity and cost reductions were achieved:

HPGR CIRCUIT CHALLENGES OVERCOME

- Wet screening also preferred to aid dispersion of the compressed HPGR product
- But wet screening prevents in-line storage of mill feed

How productivity and cost reductions were achieved:

HPGR CIRCUIT CHALLENGES OVERCOME

 Result has been that previous Australian HPGR operations have had slow ramp up or not achieved design throughput

Other Considerations

INNOVATE WITH CAUTION - Other Risks:

- Undersizing of wet screen
- Underestimating mill power required (limited industry experience in estimating mill power required after HPGR)
- Conflicting advice 13 MW vs 15 MW
- Decision to install 14 MW mill with ability to draw >15 MW by VS drive
- Extra power has been needed:
 - Mill efficiency has been lower than estimated
 - Extra power has compensated for 90% vs 95% utilisation

PRODUCTIVITY STRATEGIES AND COST REDUCTION METHODS

Existing Mines

- Project 500
- Example Sunrise
 Dam

New Mines

- Tropicana Focus on Energy
- Gramalote Innovative design

Fechnology En

• Sorter evolution

2. INNOVATIONS FOR NEW MINES - GRAMALOTE COLOMBIA

Jointly owned by AGA and B2Gold in Colombia

Business Drivers for Change

- Challenge is low grade current published reserves 190 Mt at 0.51 g/t
- At PFS in 2013 project was economic but did not meet investment hurdles
- Understanding and exploiting favourable ore characteristics is key to economic development

HOW PRODUCTIVITY AND COST REDUCTIONS WERE ACHIEVED:

- Comprehensive team review in 2014 over 1 week (internal and external people)
- Generated ideas, evaluated economics, preliminary selection of options
- Over 12 months of testing has refined selection, still conceptual

GRAMALOTE – RECOGNISING POTENTIAL

Ore Characteristics:

- Gold is associated with pyrite
- Pyrite is very coarse mostly >400 μm
- Very high float recoveries maintained to >300 µm
- Leach recovery 97% from 4% concentrate mass
- Values occur predominantly in veins and fractures with preferential breakage
- Flotation recovery from shallow oxide ore >80%

Size	Au Rec %					
μm	GER	GIR				
300	99	94				
212	99	96				
150	99	99				
106	97	99				
75	99	97				
53	92	98				
38	97	94				
-38	96	96				

GRAMALOTE – MAKING CHANGES

Upgrading by Screening:

- Screening low grade ROM ore reduces mining cut off grade to 0.1 g/t
- Average 65% of gold reports to 40% of mass
- Treat ore between 0.1 and 0.35 g/t

Overall, resource recovery is improved and plant head grade increases

Coarser Flotation of Fresh Ore:

• Float fresh ore at 300 µm grind for 95% overall recovery

GRAMALOTE – MAKING CHANGES

Oxide Ore Processing:

- 40 Mt of oxide ore at 0.4 g/t
- Has to be mined
- Direct leaching gives ~100% recovery but uneconomic
- Geology & mineralogy predicts gold in oxidised pyrite and quartz
- Wet scrubbing rejects slimes for low gold loss
- Floating deslimed ore gives >80% recovery at low cost

Overall, process changes estimated to more than double NPV

PRODUCTIVITY STRATEGIES AND COST REDUCTION METHODS

Existing Mines

- Project 500
- Example Sunrise
 Dam

New Mines

- Tropicana Focus on Energy
- Gramolote Innovative design

Technology Enabler

• Sorter evolution

NEW TECHNOLOGY DEVELOPMENT – ORE SORTING

- Ore sorting can reject waste early and improve productivity
- "Proof of Concept" testing on ore at Sunrise Dam in 2011 demonstrated the necessary preconditions

TOMRA

- Grade heterogeneity (high and low grade particles)
- Waste could be visually recognised

• But sorting technologies available then could not duplicate ability of human eye

NEW TECHNOLOGY DEVELOPMENT – ORE SORTING

A Technological Solution:

- Good relationship demonstrated at Tropicana between hyperspectral data and gold grade
- Idea tested on Sunrise Dam ore
- One particle in a set graded 900 g/t and carried 75% of the gold
- Sort based on hyperspectral data (NIR range) would theoretically achieve 97% of gold in 14% mass

Working with Vendors – A WIP

- Sorting technology has advanced due to plastics recycling
- Wavelength range for Sunrise Dam breaking new ground for use in mining
- Bulk testwork on specially fitted machine will commence December in Germany

ORE SORTING - APPLICATIONS

Sunrise Dam:

- Open Pit operations ceased in 2014
- Underground ramping up from 1 Mtpa to 3.7 Mtpa
- Stockpiled low grade open pit ore needed in medium term to fill mill
- Sorting can increase grade to mill for higher gold output

Brazil:

- Investigating sorting to increase ounce production without capital plant expansions
- Multiple sources
- On-site piloting commencing November

Geita – Tanzania:

• Investigating sorting of low grade stockpiles

LESSONS LEARNT FROM THE TRENCHES

They are ancient, but often ignored

Know what you are dealing with:

- Learn from the ore. Process mineralogy rules, OK? (*if you can find a process mineralogist*)
- Believe the experimental evidence, not accepted wisdom (*but double check*)
- An hour or two of simple hands-on testing is worth a week of debate
- Comparative trade-off studies should be based as much as possible on economics and not prior beliefs (assuming all alternatives are fit for purpose)

Genuinely work as a team:

- Collaborate openly with others, consultants, suppliers, and share ideas (we all think we do, but how often do we see good ideas or criticisms being overruled and nobody is able to challenge it...)
- The whole mine is a team (amazingly geologists, miners, metallurgists and engineers can work together and achieve much more)

QUESTIONS?