
 
 
 
VANCOUVER 2015        

1 | P a g e  
 

   

 
 
 
 

CORRELATION AND REGRESSION ANALYSIS IN THE X-RAY FLUORESCENCE SORTING 
OF A LOW GRADE COPPER ORE 

 
*Libin Tong1, Bahjat Khoshaba2, Andrew Bamber2 and Bern Klein1 

 
1Norman B. Keevil Institute of Mining Engineering 

University of British Columbia 
6350 Stores Road 

Vancouver, BC, Canada  V6T 1Z4 
(*Corresponding author: lbtong@mining.ubc.ca) 

 
2MineSense Technologies Ltd. 
Suite 100, 8365 Ontario Street 

Vancouver, BC, Canada  V5X 3E8 
 

 
 
 
  



 
 
 
VANCOUVER 2015        

2 | P a g e  
 

   

 
 
 
 

CORRELATION AND REGRESSION ANALYSIS IN THE X-RAY FLUORESCENCE SORTING 
OF A LOW GRADE COPPER ORE 

 
 

ABSTRACT 
 

The benefits of pre-concentration using sensor-based sorting have been widely reported with the 
greatest potential impacts on low grade and high tonnage operations such those mining copper porphyry 
deposits.  Due to the non-selective nature of bulk surface mining methods, significant quantities of waste 
misreport to the concentrator reducing the feed grade, consuming energy during comminution and 
increasing water usage.  In addition, significant metal misreports to the waste dump that represents a 
production loss and contributes to the metal content and therefore liability of the waste dump.  The two 
main barriers to broader application of sorting are limitations in processing rates and the inability of 
sensors to accurately discriminate ore from waste.  The present study is focussed on the latter and 
demonstrates the development of a more intelligent and more accurate sensing system.  The X-ray 
fluorescence (XRF) technology was examined to explore its potential to pre-concentrate a low-grade 
copper ore through discarding barren particles.  Simple linear correlation between the copper grades 
estimated using XRF and the copper grades obtained through chemical analysis did not meet the sorting 
requirement.  Improved linear correlation and multiple linear correlation analysis were introduced in the 
study and better sorting results were obtained due to stronger correlations. 
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INTRODUCTION 

 
Advances in Ore Sorting 
 

Numerous studies have demonstrated the technical and economic benefits of sensor based sorting 
to preconcentrate ores (Bamber, 2008; Bamber, Klein, Pakalnis, & Scoble, 2008; Kleine & Wotruba, 2010; 
Knapp, Neubert, Schropp, & Wotruba, 2014; Kobzev, 2014; Lessard, de Bakker, & McHugh, 2014; 
Robben, Wotruba, Robben, von Ketelhodt, & Kowalzcyk, 2013).  For large scale copper porphyry 
operations the application of sensor-based sorting to discard barren rock results in improved grade control 
(i.e. higher grades to concentrator), decreased energy consumption for comminution and reduced water 
usage on a volume per weight of metal basis (Bamber et al., 2008, Gunson, Klein, Veiga, & Dunbar, 2012).  
Sorting not only diverts barren rock away from the concentrator, it also recovers metal bearing that would 
otherwise be lost to the waste dump resulting in improved resource utilization.  A recent study on waste 
dumps from two copper porphyry mines showed that 25% of the waste rock was of sufficient grade to 
report to the concentrator (Mazhary & Klein, 2015).  

 
Despite its potential benefits, sorting is not widely applied and has found only niche applications.  

Barriers to broader application relate to: 
 

1) The low throughput capacity of available industrial machines, and 
2) The limited ability of sensors to discriminate between barren rock and valuable rock.   

 
Innovations aimed at increasing the capacity relate to improving the understanding of ore 

heterogeneity as the basis for developing semi-bulk or bulk sorting systems by incorporating the sensors in 
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the material handling equipment (MineSense Technologies Ltd, 2015).  Advances in sensing systems relate 
to the improved accuracy and speed of sensor response as well as the development of intelligent methods 
of analyzing the sensor responses to generate discrimination algorithms for sorting machines.   

 
The present paper focuses on the development of more intelligent sensing systems by using 

correlation and regression analysis of XRF sensor responses.  Sensor-based sorting technologies, which 
take advantage of the electromagnetic spectrum, include radiometric, x-ray transmission, x-ray 
fluorescence (XRF), near infrared, photometric, inductive, microwave heating and so on.  The physical 
principle of XRF is based on the excitation of atoms on the ore particle surface.  The generated XRF 
spectrum can be used to sort base metals, ferrous metals, precious metals, industrial minerals and rare 
earths (Knapp et al., 2014).  Mineral association and the grade variation are critical for successful XRF 
sorting process (Fickling, 2011).  For the application of XRF to sorting manganese, the sensor response, 
referred to as the H-value, was used in linear regression analysis. The H-value is determined by both the 
number of impulses registered in the manganese and iron x-ray emission spectrum area and the number of 
impulses registered in the diffused emission spectrum area (Equation 1).  A strong linear correlation 
between the sorter value and the grade of the ore was achieved, indicating the high sorting accuracy 
(Mohanan, Saxena, Kumar, Naik, & Kumar, 2013). 

 
𝐻 = 𝑁𝑀𝑀

𝑁𝑠+�𝑘×𝑁𝐹𝐹
𝑁𝑀𝑀

×𝑁𝐹𝐹�
     (1) 

 
As suggested by Mohanan et al., (2013), once the linear correlation between the assay grade of the 

ore particles and the sorter values met the operational requirement, a simple linear regression equation was 
used to calibrate the sensor values and transfer them into a metal grade.  The predicted grade was then used 
as the basis for accepting or rejecting the particle as ore or waste, respectively.  The accuracy of the XRF 
measurement is greatly influenced by the heterogeneity of the ore particles (Jenkins, 1999).  The 
correlation and regression relationship between the sensor values and the assay results require further study 
for successful sorting of ores with complex mineralogy.  
 

The results obtained by XRF scanning can be presented in the form of count rates, ratios of counts, 
and intensities of elements.  Attempts were made to calibrate element intensities measured by XRF to 
element concentrations by conventional chemical analysis.  Linear correlation was not applicable in many 
cases due to the following reasons: heterogeneous of the specimens, low element concentrations, and the 
interactions of element of interest and/or the other elements present in the sample (Jan Weltje & Tjallingii, 
2008).  The ideal specimen for XRF analysis is one in which the analyzed volume of the specimen is 
representative of the total specimen.  For XRF sorting of rocks, the ore particle size, particle size 
homogeneity, and ore composition heterogeneity constrain the ideal circumstance (Jenkins, 2000).  
 

Recent XRF sorting tests on a low grade copper ores were carried out at MineSense Technologies 
Ltd..  The element grades of interest were reported by XRF and the correlation between the XRF data and 
the assay results was analyzed.  Simple linear correlation and regression equations may not meet the 
requirements for sorting.  It is therefore necessary to develop new methods to analyze the sensor data.  The 
analysis starts from the simplest relationships namely linear correlation and linear regression analyses.  
 

The main objective of this investigation was to study the correlation between the copper grades 
estimated by XRF and the copper grades through chemical analysis.  This included determining the 
Pearson correlation coefficient and the Spearman rank correlation coefficient in order to understand how 
the correlations could be improved through applying statistical method to information about the ore 
particles allowing calibration of copper grades from XRF sensor responses.  
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EXPERIMENTAL 
 
Ore Sample and Test Procedure 
 

A low-grade copper ore sample was obtained from the Spence copper mine in Chile.  A bench 
scale XRF sorting test procedure as shown in Figure 1 was followed.  The sample was weighed and 
screened into size fractions for testing.  About 500 ore particles in the -75+25 mm size fraction were 
selected for the XRF sorting tests from which 85 particles were selected for assaying.  The assay results 
were used for the correlation and regression analysis.  The results of the correlation and regression analyses 
were used to generate discrimination algorithms, which were applied to the rocks to classify as either ore or 
waste.   
 

 
 

Figure 1 – Bench scale XRF sorting test procedure 
 
Copper Grade Measurements 
 
Copper Grade Estimated by X-Ray Fluorescence 
 

High-energy radiation from the XRF unit causes the atoms on the ore particle surface to ionize to 
generate X-ray fluorescence.  The X-ray detector generates a counting rate (𝑅) from an interested element 
by converting the collected photons.  Equation 2 shows the number of counts (𝑁) generated by the X-ray 
detector for a given time 𝑡.  The relationship between the frequency (energy) and the atomic number forms 
the X-ray spectrum (Jenkins, 1999).  Then, the counts of the XRF for a wide range of elements can be 
utilized to quantify the chemical composition of the particles.  Equation 3 shows the factors that can 
influence the concentration measurement, where 𝐶 is the concentration of the measured element; 𝐾 is a 
calibration constant determined by instrumental factors; 𝑀 is the matrix effect; 𝑆 is the specimen effect.  
Individual ore particles with size range from 1 to 3 inches were tested by the XRF sensor to estimate the 
copper grade.  The specimen effect has great impact on the copper grade measurement of the ores particles.  

 
𝑁 = 𝑅 × 𝑡      (2) 

 
𝐶 = 𝐾 × 𝑅 × 𝑀 × 𝑆      (3) 
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Correlation Analysis 
 
Pearson’s Correlation 
 

The copper grades measured by both XRF and the assay methods were analyzed by Pearson’s 
correlation.  In the analysis, the two sets of copper grades are represented by X, Y, respectively.  The 
correlation coefficient was calculated using Equation 4, where, 𝑥𝑖 is the sorting response of each particle, 
i.e. the copper grade from XRF; �̅� is the mean of copper grade of all the particles; 𝑦𝑖  is the copper grade of 
each particle obtained through assay; 𝑦� is the mean of the copper grade of all the particles measured by 
assay (Bewick, Cheek, & Ball, 2003).  
 

𝑟 = ∑ (𝑥𝑖−�̅�)(𝑦𝑖−𝑦�)𝑀
𝑖=1

�∑ (𝑥𝑖−�̅�)2 ∑ (𝑦𝑖−𝑦�)2𝑀
𝑖=1

𝑀
𝑖=1

     (4) 

 
When the Pearson’s correlation method is used, the following assumptions are made.  The copper 

grades should be continuous and there are no significant outliers.  There is a linear relationship between the 
copper grades. The copper grades should be approximately normally distributed.  The correlation 
coefficient ranges from -1 to 1, which can be categorised as positive correlation, negative correlation, and 
no correlation.  In this study, it assumes that when the copper grade obtained by assay increases, the copper 
grade estimated by XRF also increases, so, only the correlation in the range from 0 to 1 is considered.  

 
Spearman’s Correlation  
 

The Pearson’s correlation coefficient can be misleading when the relationships between the 
copper grades is not linear (Hauke & Kossowki, 2011).  Spearman’s coefficient, Equation 5, assesses how 
well a function can describe the relationships between two variables.  Where, 𝑑𝑖 is the difference between 
ranks; 𝑛 is the size of the sample.  

 

𝑟𝑠 = 1 − 6∑𝑑𝑖
2

𝑛(𝑛2−1)
      (5) 

 
Regression Analysis 
 
Linear Regression Analysis 
 

The copper grades obtained by XRF and chemical assay are believed to be related to each other 
such that the relationship can be found by regression analysis.  The process of linear regression fits 
estimated responses to measured responses by adjusting coefficient values to minimize the sum of the 
squared errors and was previously used for XRF sorting studies to calibrate the XRF sorter values (Fickling, 
2011; Mohanan et al., 2013).  Equation 6 represents the simple linear regression, where, 𝛽0 is a constant, 𝛽1 
is the slope, and 𝜀𝑖  is the statistical error for 𝑖𝑡ℎ  data point (Shi & Conrad, 2009).  Coefficient of 
determination (R2), is a measure of goodness-of-fit for linear regression (Bewick et al., 2003).  

 
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝜀𝑖     (6) 

 
𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 +∙∙∙ 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖    (7) 

 
Multiple Linear Regression Analysis 
 

The XRF determines not only the Cu grade but also the grades of several other elements. Multiple 
linear regression analysis can be used to describe the relationship between the Cu assay grade and other 
elements determined by XRF sorting.  Equation 7 shows the equation for 𝑝 variables and 𝑝 + 1 parameters 
(Shi & Conrad, 2009). Stepwise regression is a method used to determine which of the independent 
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variables are significant, which simplifies the resulting regression expression by eliminating those that are 
not significant (Cevik, 2007). 

 
RESULTS AND DISCUSSION 

 
Sample Evaluation 
 

Copper values measured by both XRF estimation and chemical analysis on the selected 85 ore 
particles were analyzed and the results are shown in Table 1.  Both the maximum copper grade and the 
minimum copper grade were reported.  The median is the central copper grade when all the 85 particles are 
sorted in order.  The mode is the most commonly occurring copper grade in the sample.  For the XRF data, 
20% of the particles contained copper grades of 0.1% and 0.2%.  Therefore, the mode was set to 0.15% 
(Figure 2).  The normal probabilities of the two data sets are 0.86 and 0.81 for the XRF and the assays 
respectively, indicating that the copper grade has a normal distribution.  

 
Table 1 – Comparison of the XRF estimation and the assay results on 85 ore particles 

Method XRF Assay 
Maximum Cu% 1.96 2.71 
Minimum Cu% 0.03 0.02 
Median Cu% 0.25 0.47 
Mean, Cu% 0.45 0.57 
Mode, Cu% 0.15 0.20 

 

 
 

Figure 2 – Copper distribution in the selected 85 ore particles  
 
Correlation Analysis 
 
Theoretical Relationship 
 

Figure 3 presents the correlation concept for Cu grades determined by XRF and chemical assay.  
Pure mineral refers to chalcopyrite, CuFeS2.  The test limit in Figure 3 is a concept line of the maximum 
copper grade of the ore sample used in the study.  The cut-off copper grade is 0.2%.  Ideally, the copper 
grade measured by XRF equals to the copper grade obtained by chemical assay.  Due to its mineralogy, the 
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copper grade discussed in the XRF sorting test is limited to a very small range (up to a few percent Cu).  
The sorting process needs to be more accurate when the grade of the ore particle is close to the cut-off 
grade.  So, a stronger correlation is necessary for the data close to the cut-off grade.  

 
As shown in Figure 4, the mineral particles can be grouped based on the assay and the XRF 

relationships, e.g. the ratio of the copper grades measured by assay versus the copper grade by XRF.  When 
the ratio equals to 1, it means that the copper distribution inside the ore particle equals to the copper 
distribution on the particle surface.  When the ratio is less than 1, it means that there is more copper on the 
ore particle surface.  When the ratio is greater than 1, it means that more copper is distributed inside the ore 
particle.  For statistics analysis, extremely large or extremely small ratios can be considered outliers in the 
Pearson’s correlation coefficient study.  Figure 4 indicates that the mineralogy is critical for a successful 
sorting process.  Simple linear regression analysis requires the data located in a region close to the ideal 
value.   

 

 
 

Figure 3 – Variation of copper grades in the XRF measurement 
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Figure 4 – Effect of copper distribution on the XRF estimation and chemical analysis 
 

For a sorting operation, the efficiency is determined by the accuracy of the XRF measurement on 
each ore particle, which is determined by the count rate, measurement time, and heterogeneity of the 
copper distribution in the particle.  A high count rate, long measurement time, and homogeneous particles 
are positive for sorting.  Sorting at the cut-off grade requires that the sorting element has a high count 
number.  Wide ranges of the copper grade ratio between the assay data and the XRF readings limit the 
usage of the sorting operation.  

 
Figure 3 indicates that the copper ore sorting efficiency is also determined by the copper 

distribution in the sample.  The sorting process is easy when the sample contains only copper rich and 
barren particles.  The constitutional heterogeneity (CH) refers to the heterogeneity dependence on the 
copper grade/weight differences between the individual ore particles.  A large CH value indicates greater 
heterogeneity making the ore easy to sort.  
 
Linear Correlation 
 

The copper grades of the selected 85 particles measured by XRF and chemical analysis are shown 
in Figure 5.  As shown in Table 2, the Pearson’s correlation coefficient is 0.47, which indicates a weak 
linear correlation between the two sets of data.  The effect of outliers on the correlation was assessed and 
there was no significant improvement to the correlation when the outliers were removed.  
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Figure 5 – Copper grades measured by assay versus results measured by XRF 
 
Piecewise Linear Correlation 
 

The Spearman rank correlation coefficient, presented in Table 2, is higher than the Pearson 
correlation coefficient which means that a non-linear equation can better describe the copper grade 
relationship for the 85 ore particles.  Linear correlation analysis has to consider both the copper grade and 
the sorting requirement.  Based on the copper grade determined by XRF, the 85 particles were sorted into 
three groups referred to as “high”, “medium”, and “low” grade.  The Pearson’s correlation coefficient was 
calculated for each group of data (Table 2). The correlation of the “low” copper grade group is the highest, 
which is positive for indentifying the low grade particles.  
 

Copper values measured by both XRF and chemical assay on the three groups of particles were 
analyzed and the results are shown in Table 3.  The mean Cu grade suggests that the XRF sorter values 
increase with the assayed Cu grade.  Generally, the XRF values are smaller than the assayed grades for the 
low and medium groups while the XRF value is larger than the assayed Cu grade for the high grade 
particles.  When the XRF reading is higher than 0.2%, the assayed Cu grade is higher than the cut-off grade.  
Therefore both the high and medium grade groups can be recovered as concentrate and the efficiency of Cu 
sorting is dependent on the ability to sort the low grade particles.  
 

Table 2 – List of correlation coefficients between the XRF and the chemical analysis results 

Range of Cu 
grade, % Measured 

by XRF 

Pearson’s grade 
correlation 

Pearson’s 
weight 

correlation 

Spearman’s 
grade 

correlation 

Spearman’s 
weight 

correlation 
Overall 0.48 0.52 0.53 0.65 

High 0.28 0.57 0.12 0.72 
Medium 0.36 0.87 0.38 0.86 

Low 0.55 0.86 0.58 0.91 
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Table 3 –Cu grade of three groups of ore particles based on XRF estimation 

Group Low 
XRF 

Low 
Assay 

Medium 
XRF 

Medium 
Assay 

High 
XRF 

High 
Assay 

Ore particle number 34 34 23 23 28 28 
Maximum Cu% 0.19 1.02 0.48 1.31 1.96 2.71 
Minimum Cu% 0.03 0.02 0.2 0.23 0.52 0.31 
Median Cu% 0.10 0.41 0.28 0.47 0.9 0.64 
Mean, Cu% 0.11 0.39 0.31 0.56 0.98 0.76 
Mode, Cu% 0.15 0.5 0.3 0.5 0.9 0.6 

 
Multiple Linear Correlation Analysis 
 

Correlation analysis was carried out between the assayed Cu grade and the elemental content 
estimated by XRF.  The correlation coefficient of up to 0.6 was achieved indicating that the improvement 
of copper ore sorting can be achieved by considering several elements as well as their interaction effects.  
As shown in Table 4, a strong correlation was achieved between the copper grade and the 12 elemental 
contents and their interaction effects as estimated by XRF.  It is important to recognize that the elements 
reflect on the mineralogical composition of the ore such that may be positively or negatively correlated to 
the copper grade.  For example, chalcopyrite contains Fe which should be positively correlated to Cu grade.  
Conversely, elements such as Al, may represent the gangue alumina-silicate minerals and would be 
negatively correlated.  Interaction affects must also be considered as they can relate to a specific mineral 
such as Fe and Cu in chalcopyrite.  Therefore multiple linear correlation analysis is recommended for the 
low grade ore sorting data analysis.  
 

Table 4 – List of correlation coefficients between the copper grade (assay) and the various elements 
estimated by XRF: 85 ore particles 

Elements estimated by 
XRF 

Multiple linear regression 
analysis without interaction 

Multiple linear regression 
analysis with interaction 

Al, Si, S, Ti, V, Fe, Cu 0.53 0.60 
Al, Si, S, Ti, V, Fe, Cu, 

Zn, Mo, Sn, Zr, Sb 
0.61 0.94 

 
Regression Analysis 
 
Linear Regression Analysis 
 

The purpose of the regression analysis is to find an equation to convert the sorter values to the 
copper grade.  The linear regression method was used for the regression analysis.  As shown in Figure 6, 
the ideal curve was drawn based on the assayed Cu grade.  Similar curves were drawn based on XRF 
sorting, calibrated data based on a single linear equation, and calibrated data based on a stepwise linear 
equation.  In Figure 6, when the XRF readings on Cu were calibrated based on single linear equation, there 
was no improvement on the sorting results due to the weak correlation.  
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Figure 6 – Grade/recovery relationships of the overall sample 
 

 
 

Figure 7 – Copper weights measured by assay versus data measured by XRF 
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Figure 8 – Grade/recovery relationships of the ore particles: high grade group 
 

Piecewise Linear Regression Analysis  
 

The piecewise linear relationship of the low, medium, and high grade groups of ore particles were 
shown in Figure 7.  As shown in the Figure, a simple linear equation was suggested for each group of ore 
particles and the equations can be used to convert the XRF values to Cu grade.  The improvement of the 
piecewise regression on the Cu grade/recovery is shown in Figure 6.  When piecewise regression was used 
in the sorting process, more Cu was recovered as concentrate with a higher Cu grade.  
 

 
 

Figure 9 – Grade/recovery relationships of the ore particles: medium grade group 
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Figure 10 – Grade/recovery relationships of the ore particles: low grade group 
 

The grade/recovery relationships of the three groups of copper ore particles are shown in Figures 8 
to 10.  The ideal curves were drawn based on the assay data which indicates the sorting potential.  If the ore 
particles are sorted based on the XRF measurement, for the high grade ore particles, the sorting result is 
poor which is consistent with the weak correlation.  For both medium and low grade ore particles, better 
sorting results were achieved when the mass recovery is roughly higher than 40%.  For all of the three 
groups of data, the sorting results could be excellent after the XRF values were calibrated.  Stronger 
correlation in the low and medium Cu grade region is very useful in the sorting process and better sorting 
results are achieved at the cut-off grade.   
 

 
 

Figure 11 – Effect of copper distribution on copper weight-weight relationships: data separated by the 
grade ratio (GR) between the assayed Cu grade and the XRF estimation, High (8.9<GR<3.0), Medium 

(2.8<GR<0.8), Low (0.8<GR<0.3) 
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Effect of Copper Distribution 
 

The sorting result is greatly influenced by the copper distribution on the ore particle surfaces and 
the copper values inside the ore particles. An alternate way to separate the 85 ore particles into three groups 
is based on the grade ratio between the assayed copper grade and the XRF value.  As shown in Figure 11, 
three equations can be used to describe the relationships.  We noticed that both the matrix effect and the 
specimen effect influence the XRF value.  The wide range of grade ratios indicates the heterogeneity of the 
copper values in the selected ore particles, which is the reason why simple linear regression does not work 
for the sorting process.  
 
Multiple Linear Regression Analysis  
 

As shown in Table 4, strong correlation was achieved between the copper grade (assay) and the 12 
elements measured by XRF.  The application of the multiple linear regression equation to the sorting 
results of the 85 particles is shown in Figure 12.  The ideal curve was drawn based on the assayed Cu grade.  
Similar curves were drawn based on the two multiple linear regression equations: with and without 
interaction effects.  Great improvement was achieved for the sorting results due to the strong correlation.  
 

Table 5 – List of the copper grade (%) after sorting through various analytical methods: 85 ore particles, 
feed grade: 0.58% 

Cu recovery: % 10 30 60 90 
Assay data 1.91 1.26 0.87 0.66 

XRF reading without calibration 0.78 0.77 0.65 0.61 
Linear correlation 0.86 0.85 0.69 0.62 

Piecewise linear correlation 0.87 0.70 0.74 0.62 
Multiple linear correlation with interaction 1.91 1.17 0.85 0.64 

 
A summary of the copper grade/recovery relationships obtained through various analytical 

methods is shown in Table 5.  Sorting by XRF reading without calibration or with simple linear correlation 
does not meet the requirement due to the weak correlation.  The multiple linear correlation analysis is a 
useful method for developing algorithms for sorting the low grade Cu ore particles.   
 

 
 

Figure 12 – Grade/recovery relationships of the overall sample: multiple linear regression analysis 
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CONCLUSIONS 
 

The copper grades of ore particles from the Spence copper mine in Chile were measured by both 
XRF and assay.  Linear and multiple linear correlation and regression methods were used to evaluate the 
relationships of the copper grades.  When the ore particles were separated into different groups based on 
the copper grade measured by XRF, the ‘low’ grade group of data shows better correlation than the ‘high’ 
grade groups.  Based on the regression equation, the XRF values can be converted into copper grades.  The 
multiple linear correlation analysis is a useful method for developing algorithms for sorting the low grade 
Cu ore particles.  The developed method can be used in the similar sorting process.   
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