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ABSTRACT 
Much practical experience has been gathered in the last 30 years of application of high-pressure 
grinding rolls (HPGR) integrated with ball milling in size reduction of fine iron ore concentrates. The 
company Vale S.A, in Complexo de Tubarão (Brazil), was one of the pioneers applying the 
technology prior to pelletisation with an outstanding size reduction energy efficiency in the circuit and 
a significant increment in the specific surface area of the product. Recent studies by the authors 
demonstrated benefits of modelling and simulation to improve the performance of HPGRs in this 
particular application, with the model being able to describe HPGR performance under different 
operating conditions and under variations of feed size distribution. Despite these important 
advances, this modelling approach has only been used offline and under steady-state conditions. 
The present work applies the modified Torres and Casali model proposed by the authors in pseudo-
dynamic simulations. The ability of the model to predict the characteristics of the product in real-time 
is evaluated using data available online for the pellet feed preparation circuit. Results demonstrated 
the model capabilities to map the physical operation and give a realistic representation of the 
process. Additionally, the model is demonstrated to be able to support the pellet feed production by 
providing extended real-time information of the process, making it a useful tool for improvement of 
the operational strategies and process stability. 

INTRODUCTION 
High-pressure grinding rolls (HPGR) reached great popularity in the last 30 years of application in 
the minerals industry. The company Vale S.A, in the Complexo de Tubarão (Vitória, Brazil), was one 
of the pioneers using this technology for pressing iron ore concentrates in integrated circuits with 
ball milling (Van der Meer, 1997), where the HPGR usually operates in the regrinding prior to pellet 
formation in the so-called pellet feed preparation stage. The success of HPGRs in this type of 
application can be summarised by their capabilities to improve the Blaine specific surface area (BSA) 
coupled with a high throughput and low specific energy consumption (Van der Meer, 2010; 
Abazarpoor et al, 2018; Campos et al, 2019a). In this particular circuit configuration, the HPGR 
represents the interface between the end of the pellet feed preparation circuit and the beginning of 
the pellet formation process (Campos et al, 2019a), so that the technology occupies a key position 
in potentially absorbing disturbances caused in upstream operations and producing a qualified iron 
ore pellet feed to the downstream process. 
Aiming to support operations, advances in the mathematical modelling describing HPGR 
performance followed, at least in parts, the improvement in the technology over the last 40 years 
(Rashidi et al, 2017). Among several works considering simplest and empirical modelling 
approaches (Chelgani et al, 2021), going through phenomenological models (Morrell et al, 1997; 
Torres and Casali, 2009; Dundar et al, 2013) and more in-depth descriptions with simulations using 
the discrete element method (Barrios and Tavares, 2016; Cleary and Sinnott, 2021; Rodriguez et al, 
2021, 2022), improvements have been made possible in operations. New dynamic modelling 
approaches have been proposed, showing potential to be used as model predictive control in 
industrial-scale HPGRs (Numbi and Xia, 2015; Johansson and Evertsson, 2019; Vyhmeister et al, 
2019) and to help improve understanding towards process integration. Nevertheless, the simplicity 
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of some of the descriptions and the very limited level of validation of some of these approaches raise 
several questions regarding their applicability. In the particular case of interest in the present work 
regarding pressing iron ore concentrates, published works by the authors (Campos et al, 2019b, 
2021) proposed and demonstrated the validity of several modifications to the phenomenological 
HPGR model proposed by Torres and Casali (2009), applying it to both pilot – and industrial-scale 
HPGRs operating under a range of conditions. However, applications were limited to offline 
simulations and to steady state conditions. 
Indeed, the new digital transformation in the minerals industry is shifting traditional operation towards 
new approaches that are able to correlate dynamic modelling with industrial demands from real-time 
simulations. Robust models providing rapid and accurate responses coupled with an integration into 
the plant network and real-time information between the physical operation and the digital models 
will, potentially, allow predicting variations within the process besides being the basis of a robust 
model-predictive control. Despite these potential improvements, several key challenges still remain 
when it comes to HPGR full process integration and multi-scale dynamic modelling within pellet feed 
preparation circuits for long periods. 
The present work proposes a new modelling approach integrated with real-time information and uses 
it in pseudo-dynamic simulations of size reduction of iron ore concentrates in an industrial-scale 
HPGR. Model prediction is investigated in a period of a year of operation and applied to describe 
HPGR performance under different roll surface wear conditions. A new method is proposed and 
applied to improve model prediction when dealing with worn rolls. 

MODELLING BACKGROUND 
Among the main phenomenological mathematical models that are able to describe the HPGR 
performance (Morrell et al, 1997; Torres and Casali, 2009; Dundar et al, 2013), the approach 
proposed by Torres and Casali (2009) is able to predict power consumption and throughput on the 
basis of physical equations on the operations, besides describing the size reduction based on the 
population balance model. Recent works by the authors identified some limitations on the model 
when dealing with Brazilian iron ores and proposed some particular modifications to model equations 
with the aim of improving prediction (Campos et al, 2019b, 2021). 
Briefly, the so-called modified Torres and Casali model (Campos et al, 2019b, 2021) relies on the 
plug flow model to calculate the HPGR throughput as:  

 𝑄𝑄 = 𝑈𝑈𝑔𝑔𝐿𝐿𝜒𝜒𝑔𝑔𝜌𝜌𝑔𝑔 �
100

100− 𝛿𝛿
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where 𝑈𝑈𝑔𝑔 is the material velocity, 𝜒𝜒𝑔𝑔 is the operating gap, L is the roll length, 𝜌𝜌𝑔𝑔 is the flake density 
and 𝛿𝛿 is a parameter representing the proportion of material ejected by the edge of the rolls given 
by: 
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where D is the roll diameter, U is the roll velocity, Umax is the maximum roll velocity allowed for the 
machine and 𝜑𝜑, 𝜐𝜐 and 𝜏𝜏 are fitting parameters. The material velocity in Equation 1 is estimated as: 

 𝑈𝑈𝑔𝑔 =
𝑈𝑈𝜌𝜌𝑚𝑚𝜒𝜒𝑐𝑐
𝜌𝜌𝑔𝑔𝜒𝜒𝑔𝑔

 (3) 

where 𝜌𝜌𝑚𝑚 is the bulk density and 𝜒𝜒𝑐𝑐 is the critical size given by 𝜒𝜒𝑐𝑐 = 𝜒𝜒𝑔𝑔 + 𝐷𝐷�1 − cos𝛼𝛼𝑖𝑖𝑖𝑖�. 

The power consumption prediction is carried out based on the torque for both rollers multiplied by 
the angular roll velocity as:  

 𝑃𝑃 = 2𝐹𝐹𝑚𝑚 sin �
𝜅𝜅𝛼𝛼𝑖𝑖𝑖𝑖

2
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where 𝛼𝛼𝑖𝑖𝑖𝑖 is the nip angle, 𝜅𝜅 is a fitting parameter that allows adjusting the estimate of the nip angle 
and Fm is the compressive force applied to the particle bed (Torres and Casali, 2009): 
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where pm is the hydraulic pressure. 
Finally, the size reduction can be predicted from an analytical solution of the population balance 
model which allows to calculate the product size distribution (𝑤𝑤𝑖𝑖,𝑘𝑘) for Nb section along the axial roll 
position (Torres and Casali, 2009): 
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where 𝑧𝑧∗ is the distance between the beginning of the compression region and the extrusion zone 
(Torres and Casali, 2009) and 𝑆𝑆𝑖𝑖,𝑘𝑘 is the breakage rate for each size class j and section k. The 
analytical solution uses the non-normalisable breakage function (King, 2001) and the specific 
selection function approach (Herbst and Fuerstenau, 1980) to solve the differential equations. The 
cumulative non-normalisable breakage function is given by:  
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where 𝑒𝑒𝑖𝑖 is the particle size, 𝛾𝛾, 𝛽𝛽, 𝜙𝜙, 𝜔𝜔 and 𝜂𝜂 are fitting parameters and bij is the distributed breakage 
function calculated from 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝐵𝐵𝑖𝑖−1,𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖. The breakage rate, on the other hand, is given by:  

 𝑆𝑆𝑖𝑖,𝑘𝑘 = 𝑠𝑠𝑖𝑖𝐸𝐸
𝑃𝑃𝑘𝑘
𝐻𝐻𝑘𝑘

𝛹𝛹 �
𝑃𝑃
𝑄𝑄
� (8) 

where Hk is a constant Hold-up along the roll length, Pk is the power profile and 𝑠𝑠𝑖𝑖𝐸𝐸 is the specific 
selection function:  

 ln�𝑠𝑠𝑖𝑖𝐸𝐸 𝑠𝑠1𝐸𝐸⁄ � = 𝜉𝜉1 ln(𝑒𝑒�𝑖𝑖 𝑒𝑒�1⁄ ) + 𝜉𝜉2[ln(𝑒𝑒�𝑖𝑖 𝑒𝑒�1⁄ )]2 (9) 

where 𝑠𝑠1𝐸𝐸, 𝜉𝜉1 and 𝜉𝜉2 are fitting parameters, 𝑒𝑒�𝑖𝑖 is the representative size calculated from 𝑒𝑒�𝑖𝑖 = �𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖−1 
and 𝑒𝑒�1 is a reference size given by the top size class. 

The power profile in Equation 8 allows the model to predict the variation of the product size 
distribution along the roll length, which is a key feature in HPGR operations. The power profile is 
then given as: 
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where 𝑃𝑃𝑘𝑘′  is calculated on the basis of the Fourier Transform and allows the model to describe shape 
profiles that vary from trapezoidal to a parabolic (Campos et al, 2021): 
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where 𝜇𝜇 is a fitting parameter. 

In order to account for the drop of energy efficiency when the specific energies are raised in HPGR 
operation, a damping parameter multiplying the breakage rate in Equation 8 was proposed (Campos 
et al, 2021): 

 𝛹𝛹(𝐸𝐸𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑝𝑝 �− �
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where 𝐸𝐸𝑖𝑖 is the specific input energy, 𝐸𝐸′ is a parameter, called energy densification, and 𝛬𝛬 is a second 
fitting parameter. 

MATERIALS AND METHODS 

HPGR operation 
An industrial-scale HPGR from one of the pelletising plants from Complexo de Tubarão from Vale 
S.A (Vitória, Brazil) was selected as case study in the present work. The HPGR operates in an 
integrated circuit with ball milling and is at the boundary between the end of the pellet feed 
preparation stage and the beginning of the pellet formation process (Campos et al, 2021). The 
machine was connected to a process information management system (PIMS) in order to capture 
information on throughput, power consumption, operating pressure, roll peripheral velocity and 
operating gap. Operating gap was measured using a gap sensor positioned on both edges of the 
rolls. 
Operation is often carried out with a feed moisture content of 8 ± 0.5 per cent, which is closer to the 
maximum that is tolerated for pressing iron ore concentrates (Van der Meer, 1997). Table 1 
summarises the main HPGR settings and range allowed for the operating conditions. Given the large 
roll dimensions, this HPGR faces a particular issue operating below the designed capacity since the 
feed hopper does not allow to keep the HPGR operating in a choke fed condition and, therefore, 
drives the machine to operate under roll peripheral velocities lower than the original value allowed 
(Table 1). 

TABLE 1 
Summary of the main HPGR settings and operating ranges. 

Variable Value 
Roll diameter (m) 2.25 

Roll length (m) 1.55 

Specific force (N/mm²) 0.5–5.5 

Operating pressure (bar) 20–180 

Roll velocity (m/s) 0.2–2.01 

Operating gap (mm)* 5–15 

Nominal throughput (t/h) 400–1200 

Total power consumption (kW) 500–3600 
 

As previous investigated by the authors (Campos et al, 2021), the HPGR is fed with a blend of four 
different iron ore concentrates mainly composed of hematite with minor amounts of quartz as 
contaminant. Specific gravity of the feed was measured by Helium Pycnometerry, being equal to 
4.9 t/m³. The bulk density was determined from the ratio between the sample mass in a known 
volume after vibration and given as 3.0 t/m³, whereas the flake density was measured using 
preserved flakes from Archimedes principle and given as 3.54 t/m³. 
In order to ensure a careful investigation about HPGR operation when machine is under different roll 
wear patterns, measurements of the distance between the top of the studs and a metal strip placed 
in the front of the rolls along the axial position were carried out as presented in Figure 1. This distance 
between the roll surface and the metal strip was measured periodically in 63 studs selected in both 
rollers using a digital calliper. It is worth mentioning that the authors recognise that recent works 
presented more reliable and accurate approaches to measure the wear pattern from online systems 
(Burchardt and Mackert, 2019), but the approach adopted in the present work was also used and 
already validated elsewhere (Rodriguez et al, 2021). 
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FIG 1 – Schematic diagram showing the experimental device used to measure the distance 
between a reference position and the top of 63 studs along the roll length. The green circle 

presents the rolls in the beginning of the wear life, whereas the red circle presents an illustration of 
the worn profile after 14 000 hours of operation, which is usually the total wear lifetime. 

Data collection 
A period of 12 months was selected with information recorded in a frequency of 5 min from PIMS, 
which corresponds to around 105 120 data points for a total of five variables in HPGR operation. 
Assuming no information about HPGR feed and product in real-time, samples were gathered from 
the process every four hours in the entire period evaluated. A sampler was used to collect material, 
whereas BSA was measured in laboratory using a PCBlaine-Star (Zünderwerke Ernst Brün GmbH). 
A total of 2190 points were recorded in this second data set. 
To ensure that the data collected from the process was reliable, two steps were used in the present 
work. First, considering the lack of uniformity in the sampling rates between the PIMS data set and 
the laboratory data set, a regularisation between both was necessary. For this purpose, the BSA 
measurement was assumed as an average of the last four hours within the process and, therefore, 
its value repeated for these previous four hours considering the frequency of 5 min adopted in the 
PIMS data set. Considering the new regularised data, the second step relied on cleaning the data to 
avoid missing values, outliers, measurement disturbances and low accuracy in all process variables. 
Data deletion strategy was adopted to overcome missing values, which is a valid approach when the 
amount of missing data is only a negligible fraction of the entire data set. In order to remove outliers, 
a preliminary operation consisted of removing data when they do not satisfy physical conditions and 
usual operating ranges presented in Table 1. Outliers were also identified and removed when a value 
for a data point was more than three scaled median absolute relative deviations from the median 
(MAD). After data reconciliation and data cleaning a set of 65 193 data points for each HPGR variable 
was then used for modelling and simulation. 

Model implementation 
The modified Torres and Casali model (Campos et al, 2019b, 2021) was implemented in MatlabTM 
(version R2021b, Mathworks Inc) to perform all the simulations. A nonlinear optimisation method 
was used to calibrate the breakage parameters (Table 1), which basically relies in a function 
available in Matlab, called fminsearch, able to find the minimum of a multivariable scalar function 
using the Nelder-Mead method from an initial estimation. The objective function consisted of the sum 
of the differences of the logarithms of the experimental and the fitted values of the particle size 
distribution of a reference test (Base Case) in cumulative form using the least squares method: 
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where N is the number of size classes, 𝑊𝑊𝐶𝐶𝑚𝑚𝐶𝐶𝑐𝑐
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 and 𝑊𝑊𝐸𝐸𝑚𝑚𝑖𝑖

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 are, respectively, the calculated and 
experimental fraction passing in size i. The objective function was proposed in the logarithmic form 
in order to ensure a more reliable description of the fine part of the size distribution, since the present 
work aims to quantify this part of the distribution accurately. 
The online model structure relied on the application of the Modified Torres and Casali model coupled 
with real-time information about HPGR operating conditions and feed characteristics. Predictions are 
evaluated on the basis of the absolute relative deviation from measurements and from time series 
comparisons. 

RESULTS 

Process results 
Data collected from PIMS and filtered following each step presented in the Section ‘HPGR operation’ 
was analysed in the entire period. Statistical analysis provided detailed information about operating 
conditions and HPGR performance variables, which were analysed in light of global variation in the 
entire period and local variations when dealing with each specific month. 
Rolls wear patterns were carefully investigated in the entire period. Figure 2 shows wear profiles in 
the beginning, middle and end of rolls lifetime. A trapezoidal (also named ‘bathtub’) profile already 
discussed and investigated elsewhere (Gardula et al, 2015; Burchardt and Mackert, 2019; Rodriguez 
et al, 2021), is evident in the beginning, whereas a parabolic profile is reached when the HPGR is 
closer to 14 000 hours of operation, which is typically the maximum lifetime for the rolls in operation. 
Wear profiles were concave and more intensive wear occurred in the middle of the rolls, besides 
presenting modest wear on the edge region up to the middle lifetime and a significant edge effect 
when the parabolic wear profile was achieved in the end of its lifetime. Results are lined up with 
previous investigations carried out using DEM (Rodriguez et al, 2021) and from industrial-scale 
measurements for pressing iron ores (Nejad and Sam, 2017). 

 
FIG 2 – Roll wear patterns registered from the beginning of operation up to the end of roll wear 

lifetime with nearly 14 000 hours of operation. 

Figure 3 presents the average variation of operating pressure (a) and roll peripheral velocity (b) in 
the twelve months investigated, whereas vertical lines represent the standard deviation for each 
month. Figure 3a shows the minor global variation of the roll peripheral velocity, in which average 
values varied from 1.00 to 1.04 m/s. The very small standard deviation for each month (up to 
0.04 m/s) also confirms that this process variable varies within a very narrow range of operating 
conditions. As discussed in Section ‘HPGR operation’, the HPGR investigated does not allow to 
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ensure a choke fed condition when dealing with high throughputs (higher than 650 t/h), thus imposing 
nearly constant roll velocities throughout its operation. Additionally, Figure 3a allows to conclude a 
potential improvement study in the HPGR performance since the roll velocity is a well-known 
controlled variable used to change throughput and power consumption of HPGRs (Johansson and 
Evertsson, 2019; Vyhmeister et al, 2019). Operating pressure, which is the key variable used to 
improve size reduction, presented monthly averages from 56.7 to 66.9 bar and standard deviations 
for each month up to 7.1 bar (Figure 3b). Local variation in the operating pressure in each month 
can be related to the control strategy adopted in order to maintain constant the torque in both rollers, 
besides potentially absorbing variations in the feed size distribution. A slight, but still important, global 
variation can be identified after the fifth month. Assuming the drop in size reduction caused by the 
worn rolls (Figure 2), the increase in operating pressure can be explained, at least in part, as an 
operational strategy used to overcome this issue. 

 
FIG 3 – Month-to-month variation of operating pressure (a) and roll peripheral velocity (b) over a 

period of 12 months. Markers are the average values for each month and vertical lines present the 
standard deviations within each month. 

Variation of the average value of the measured operating gap in each month is presented in Figure 4. 
Results showed significant changes in the entire period with average values ranging from 13.0 to 
5.1 mm. Unlike the well-known trend between operating pressure and operating gap (Daniel, 2002; 
Barrios and Tavares, 2016), the minor increase of pressure in Figure 3b does not have a clear 
relationship with the significant reduction in operating gap. In association to Figures 2 and 3b, the 
reduction of the operating gap and the poor relationship with operating pressure can be again 
explained on the basis of roll wear (Figure 2). Indeed, taking into account the approach used to 
determine the operating gap (Section ‘HPGR operation’) and the usual concave profile of the rolls 
(Figure 2), it is worth mentioning that measurements of operating gap are only associated to the 
distance between rollers in the edge, thus not accounting for the parabolic (or bathtub) profile in the 
centre region. Results from Figure 4 allow to state that operating gap is not a reliable variable in the 
process when dealing with worn rollers, although it remains valid as an indicator of roll condition. 
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FIG 4 – Month-to-month variation of operating gap over a period of 12 months. Green triangles 

represent the average values and vertical lines present the standard deviations within each month. 

Month-to-month variation of throughput and power consumption in the period investigated are shown 
in Figure 5. Minor global variations can be seen in the throughput with average values from 531 to 
623 t/h. Standard deviation values for each month (vertical lines) reaching 52 t/h also demonstrate 
that the HPGR throughput varying within a narrow range of operating conditions. Results from 
Figure 5a are mainly governed by the roll peripheral velocity (Figure 3a), thus explaining its small 
changes. 
On the other hand, Figure 5b presents both average values (from 1523 to 1483 kW) and standard 
deviations (up to 175 kW) for HPGR power with important variations. Comparing results from 
Figure 5b and Figure 3b it is possible to argue that power consumption for this HPGR is mainly 
determined by changes in operating pressure. 

 
FIG 5 – Month-to-month variation of throughput (a) and power consumption (b) over a period of 

12 months. Markers represent the average value, whereas vertical lines are the standard 
deviations within each month. 

Data from laboratory analyses characterising the HPGR feed and product are presented in Figure 6. 
Important month-to-month variations are evident, with the average value for each month varying 
from 1550 to 1650 cm²/g in the HPGR feed and from 1770 to 1910 cm²/g in the HPGR product. 
Important variations within each month, evident from the high standard deviations, also demonstrate 
the significant changes in both feed and product size. Moreover, results from Figure 6 show that the 
product BSA is highly influenced by the feed BSA and, beyond the improvement in the product 
surface area, it is almost ever following the trend imposed by the feed. 
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FIG 6 – Month-to-month variation of Blaine specific surface areas of the feed and product of the 

HPGR over a period of 12 months. Markers represent the average value, whereas vertical lines are 
the standard deviations within each month. 

Power consumption and throughput predictions 
Results from Figure 7 compare model predictions and experiments in the entire period assessed for 
power consumption (a) and throughput (b). Good agreement was reached for the first four months 
(close to 3000 hours of operation) with average absolute relative deviation from measurements up 
to 5.8 per cent for the throughput and 6.3 per cent for the power consumption. This period 
corresponds to the same period when the HGPR was operating from the beginning of lifetime until 
a point when the roll wear pattern reached a bathtub profile (Figure 2). Although already exhibiting 
a bathtub wear profile, results from Figure 7 demonstrate the ability of the model in providing good 
predictions of power and throughput. Under these conditions, the nip angle parameter (𝜅𝜅 in 
Equation 4) was fixed in 2.75. On the other hand, in the case of the throughput model (Equation 2), 
two parameters were maintained equal to those previous calibration by the authors and given by 
𝜑𝜑 = 100 and 𝜏𝜏 = 0.1 (Campos et al, 2021), whereas the remaining parameter was fitted (𝜐𝜐 = 550). 

 
FIG 7 – Comparison of experimental and predicted values for power consumption (a) and 

throughput (b) in the twelve months investigated. Data is presented for every 5 min of operation. 

With the aim of improving the model prediction when dealing with different roll wear patterns (briefly 
discussed in the Introduction), the present work proposes an algorithm to recalibrate selected 
parameters of the Modified Torres and Casali model. The step-by-step approach used to recalibrate 
the model is illustrated in Figure 8, which shows that it consists in a progressive analysis used to 
verify power consumption and throughput predictions, respectively. A value of absolute relative 
deviation from measurements of 10 per cent for both power and throughput is used as threshold for 
model accuracy. If the absolute relative deviation from measurements is higher than 10 per cent for 
more than one hour of operation, the approach allows the model to recalibrate selected model 
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parameters, as discussed previously. Parameter optimisation is performed from the difference 
between calculated and experimental values for a reference test selected in the previous hour of 
operation using the least square method. Parameter 𝜅𝜅 in Equation 4 was selected to be recalibrated 
in the power consumption model, whereas parameter 𝜐𝜐 was selected for the throughput model 
(Equation 2). 

 
FIG 8 – Approach used to recalibrate model parameters based on the deviations in model 

prediction owing to roll wear. 𝜀𝜀𝑄𝑄 and 𝜀𝜀𝐻𝐻 are the absolute relative deviation from measurements for 
the throughput and power consumption, respectively. 

Figure 9 then presents the comparison between model and experiments when the approach 
presented in Figure 8 was applied. Results showed very good agreement over the entire period, with 
absolute relative deviations of simulations to measurements up to 4.8 per cent for power 
consumption and 6.0 per cent for throughput. The approach adopted seems to be able to circumvent 
the bias in the model prediction when dealing with worn rolls, as well as minor variations in feed 
competence. Nevertheless, results from Figure 9b shows the model limited the ranges of predicted 
values for HPGR throughput from October to December 2017. These poor predictions may be 
explained, at least in part, by the simplified assumption of recalibrating some model parameters to 
compensate the error of the operating gap measurement, which may be regarded as a disadvantage 
of the algorithm. 

 
FIG 9 – Comparison between experimental and predicted power consumption (a) and throughput 

(b) in a period of twelve months assessed after applying the calibration approach depicted in 
Figure 8. Data is presented for every 5 min of operation. 
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Size reduction model 

Feed size distribution prediction 
To ensure a reliable assessment of the size reduction in the entire period, data from laboratory 
analyses were reconciled with supervisory system data. Reconciliation assumed that the 
measurement made of the BSA would be a process average over the last four hours, so that this 
value was repeated for the four hours prior to the measurement. Additionally, taking into account the 
key model requirement of using the complete feed size distribution as an input, the present work 
proposes that the feed sizes follows a Rosin-Rammler distribution function, given by: 

 𝑃𝑃𝑖𝑖 = 1 − 𝑒𝑒𝑒𝑒𝑝𝑝 �− �
𝑒𝑒𝑖𝑖
𝑒𝑒∗
�
𝛼𝛼
� (14) 

where xi is particle size (mm) and 𝑒𝑒∗ is a 62.3 per cent passing size (mm). Based on an extended 
database containing 162 measurements of BSA and size distributions presented elsewhere 
(Campos et al, 2021), a relationship was then proposed to calculate the size parameter 𝑒𝑒∗ as a 
function of the Blaine specific surface area. Figure 10 presents the relationship between these two 
variables for 80 per cent of the database, which was randomly selected as calibration data set. The 
clear linear relationship between this parameter and BSA suggests that simple linear equation to 
describe it, represented by: 

 𝑒𝑒∗ = 126.5 − 0.0412𝐵𝐵𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖𝑚𝑚 (15) 

where 𝑒𝑒∗ is given in µm and 𝐵𝐵𝑆𝑆𝐴𝐴𝐴𝐴𝐶𝐶𝑖𝑖𝑚𝑚 is the Blaine specific surface area (cm²/g) from the HPGR feed 
gathered from laboratory measurements. The parameter 𝛼𝛼 in Equation 14 was set to the optimal 
constant value of 0.97. Predictions made using Equation 14 were then compared to the respective 
experimental size distributions for both calibration data sets (80 per cent used for training) and 
validation data set (the remaining 20 per cent of the original data set) using Equation 13. Results 
demonstrate the good predictive capabilities of the model with average values for the objective 
function for calibration and validation data sets of 0.04 and 0.06, respectively. Figure 10 still presents 
the region bounds by the dotted red lines with relative deviations between model (black line) and 
fitted sizes (green circles) up to 10 per cent. 

 
FIG 10 – Relationship between BSA for several measurements carried out elsewhere (Campos 

et al, 2021) and the critical size fitted in Equation 14. Green circles are values fitted from 
Equation 14 and the black line is the model fitting with Equation 15. The red dotted lines bound the 

region with relative deviations between black line and experiments up to 10 per cent. 

Product BSA 
In order to simulate the size reduction in the HPGR the breakage model was calibrated based on 
survey data. All five parameters from the breakage function (Equation 7) and two parameters from 
the selection function (Equation 9) were assumed to remain constant and equal to previous 
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calibration carried out by the authors (Campos et al, 2019b). The remaining parameter from the 
selection function (𝑠𝑠1𝐸𝐸) was then fitted on the basis of a reference test selected among the ones when 
the HPGR was operating under good wear conditions and in the beginning of roll life. 
As such, considering the model presented in Equations 14 and 15 and the breakage parameter 
depicted above, Figure 11 presents the comparison between experimental and predicted values for 
the HPGR product BSA when considering a constant and average feed size distribution with 
1550 cm²/g in a period of 740 hours of operation. This simplified assumption was adopted in order 
to check the real effect of the feed size distribution in the model prediction. Indeed, as discussed in 
Figure 6, there is a clear trend between both HGPR feed and product, being the second one strongly 
determined by the first. Analysing both results together allows to explain the poor agreement 
between model and experiments presented in Figure 11. 

 
FIG 11 – Comparison between experimental and predicted value for the HPGR product BSA 

considering a fixed feed size distribution with 1550 cm²/g. 

Figure 12 then presents a more complete version of the model dealing with the measured feed size 
distribution in real time. First it is worth highlighting the variation of the HPGR product over the entire 
period assessed following the trend imposed by the HPGR feed. Nevertheless, results from 
Figure 12 show the very good agreement between experimental and predicted values for the HPGR 
product BSA with average absolute relative deviation from measurements equal to 2.7 per cent. 
Results also allow to conclude that the model is able to capture key variations in the feed size 
distribution and accurately describe the HPGR product. Results for the twelve months assessed also 
presented good agreement with average absolute relative deviation from measurements of up to 
5.3 per cent, but results were omitted for brevity. The predicted HPGR product BSA was calculated 
on the basis of the predicted product size distribution using a method proposed and calibrated 
previously by the authors (Campos et al, 2021). 
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FIG 12 – Comparison of experimental and predicted values for the HPGR product BSA on the 

basis of the feed BSA measured every 4 hours. 

CONCLUSIONS 
The work relied on the application of the Modified Torres and Casali model as pseudo-dynamic 
approach to describe an industrial-scale HPGR pressing iron ore concentrates. Good agreement 
was reached to predict power consumption, throughput and product BSA when the HPGR was 
operating under good roll wear conditions. 
Evidence of a bathtub wear profile and a wear parabolic profile after a period of 14 000 hours of 
operation was presented as a great challenge for model descriptions. Results highlighted an 
underestimation of power and throughput when the HPGR started operating under significant roll 
wear patterns. An algorithm was proposed to optimise selected model parameters with the aim of 
improving prediction for the HPGR with worn rolls which provided very good agreement between 
model and experiments. 
A model was also proposed to convert the HPGR feed BSA into a cumulative feed size distribution. 
The model was validated under a wide range of measurements. Application of the breakage model 
using this new feature provided very good agreement between product BSA measured and predicted 
by the model. 
Results showed feasibility of applying the model as a pseudo-dynamic model and coupled with real-
time information to describe the HPGR performance in an industrial-scale plant pressing iron ore 
concentrates. 
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