CEEC MINERAL PROCESSING AND INNOVATION WORKSHOP

Taking Grade Engineering from Concept to Production Demonstration

Dr. Luke Keeney CRC ORE Chief Operating Officer

crcore.org.au

Business Cooperative Research Centres Program

CRC ORE ESSENTIAL PARTICIPANTS

Separate ore from waste much earlier in the mining process

INTEGRATED EXTRACTION SIMULATOR

Linking individual silos for Whole-of-Mine process simulation

TECHNOLOGY DEVELOPMENT & TRANSFER

For benefit of Australia, our Participants and the Mining Industry

MINERA SAN CRISTOBAL CASE STUDY

Tarija

MESO-SCALE SAMPLING FROM ROM MUCKPILES

PRODUCTION TRIAL IN ACTION

PRODUCTION TRIAL RESULTS SUMMARY

- Screened 73,968t of ore
- Mass Splits for Fine/Middling/Coarse are 25%/30%/45% respectively
- Feed NSR was \$10.61 vs Fines NSR of \$28.30 (Upgrade of 2.67)
- Coarse NSR is \$4.99

Attribute	Feed	Upgrade Factor for Fines	Accept Grade / Value of Fines	% Value / Metal Retained
NSR (\$)	10.61	2.67	28.30	66
Zn (%)	0.56	1.94	1.08	48
Pb (%)	0.16	2.16	0.35	54
Ag (g/t)	16	2.25	35.71	56

INTRUSIVE ROCK TO BE MINED (GE PIT AND PHASES)

BULK SENSING PRODUCTION TRIALS

CRCORE with Anglo American to conduct Bulk Ore Sensing and Sorting Trials across multiple commodities

- El Soldado porphyry copper (Chile)
- Mogalakwena layered intrusion PGE (Ni/Cu) (South Africa)
- Barro Alto Ni laterite (Brazil)

BULK ORE SORTING TRIAL EXPERIMENTAL PROGRAM

- Experimental Phase 0: Preliminary Testwork and Analysis
- Experimental Phase 1a: Calibration of the Sensors
- Experimental Phase 1b: Proving the Technology
- Experimental Phase 1c: Proving Separation
- Experimental Phase 1d: Minimum Separation Capability
- Experimental Phase 1e: Develop Yield-Response Curves
- Experimental Phase 2a: Demonstrate Production Scale
- Experimental Phase 2b: Campaign through Concentrator

PRODUCTION TRIAL BULK ORE SORTING PLANT LAYOUT

PRODUCTION TRIAL BULK ORE SORTING PLANT LAYOUT

Sizer, Intermediate Conveyor, Sensors (PGNAA + XRF) and Elevated Conveyor

PRODUCTION SCALE IMPLEMENTATION AND DATA FUSION

THE GRADE ENGINEERING JOURNEY

DATA INTEGRATION AND ANALYSIS

TELFER GE PRODUCTION TRIAL - PROJECT SUMMARY

- Identify and quantify potentially amenable ores to upgrade via screening & particle sorting
- Determine production scale responses via pilot plant
- Develop, supervise and undertake wholistic project design, QAQC, procedures, sampling collection, laboratory methods and sample logistics
- Concept level design and valuation of production scale screening plant integrated to Telfer processing plant

SITE LAYOUT

SAMPLING & PROCESSING

Resource Extraction

Example single sample composite

TELFER – INTEGRATED RESULTS

Select	12	Date	Source ID Summa	ry Ore Source Bench	Blast	Block Unit	Material Type	Hardness	Oxidation	Basic Va	lue Calcul	ation Inputs			Base	Screen	ISPS
Jelett		28/05/2019	Desc_0010	West Dome 5420	25420637 54	420-432 RSM	CIL	3	2	Gold Price \$/oz	\$ 1,300	Screen Cost	\$1.00	Value abs	-\$ 4.4	-\$ 0.1	-\$ 0.4
<					>	Mass	Au ppm	Cu ppm	S %	Copper Price \$/1	\$ 5,600	Sort Cost	\$1.00	rel.Mass	100%	26%	32%
-					-	Feed 838	0.19	231	0.16	Process Cost	\$ 12.00	Gold Rec	85%	Value \$/t	-\$ 4.4	-\$ 0.2	-\$ 1.3
					100					Rehandle Cost	\$ 1.00	Copper Rec	77%	۵۷	alue \$/t	94%	70%
		RR.Au 1	L5mm Screen		100	× · · ·				-							
200						Au			/	Summary	C.Mass%	C.Au	C.Cu	C.S	RR.Au	RR.Cu	RR.S
180					80	%	0			Screen 15mm 💌	26%	66%	44%	35%	138	/8	42
_ 160								/		ISPS (45-15mm)	32%	/3%	55%		144	94	
(H 140					0 60	%	• · · · · · · · · · · · · · · · · · · ·	/		Carrow	C 040/	C A.,	0.00	0.0	DD 4	DD Cu	DD C
⊑ 120					ive					screen 150-00	100%	100%	100%	100%	KK.AU	KK.CU	кк.э
100					te 40	%				-130+90	010/0	04%	200%	200%	120	74	69
S 80					<u>c</u>		/	AI	l Data	-90443	50%	78%	66%	50%	129	74 91	0
60					20	%			1 Ref	-32+19	42%	74%	59%	44%	121	78	10
2 40								 ISI 	PS	-15+3.35	26%	66%	44%	35%	138	78	42
20						~ /		💿 Se	.Screen	-3.35	12%	44%	25%	18%	124	70	37
0					0	0% 20%	40% 6	0% 80%	100%				A	verage RR:	130	76	31
	Scree	en -32+1	L5 A -45+32	A Grab			Relative Ma	ISS						0			
					100	v				Sorter Feed	24%	12%	22%				
		RR.Cu 1	15mm Screen		1003	°			/	Sorting	C.Mass%	C.Au	C.Cu		RR.Au	RR.Cu	
200						Cu				-32+15 A	26%	67%	49%		141	93	
180					805	%		//		-32+15 R	74%	33%	51%				
					Der		1			-45+32 A	26%	32%	50%		29	97	
E 140					d 605	%	~ /			-45+32 R	74%	68%	50%				
iy 120					ve O		~ /										
kg 100					105 Hot	%			Data	Grab	C.Mass%	C.Au	C.Cu	C.S	RR.Au	RR.Cu	RR.S
S 80		- 11			ά.	1			reen	Oversize	100%	100%	100%	100%			
g 60					209	%		1:	1 Ref	Sorter Waste	50%	90%	75%	98%	171	117	193
₩ 40								o ISI	PS	Sorter Product	32%	84%	60%	67%	169	110	128
20					05	%		Se	l.Screen	Fines	26%	76%	49%	50%	159	91	95
0 —						0% 20%	40% 60	0% 80%	100%				A	verage RR:	166	106	139
	Scree	en -32+1	L5 A -45+32	A Grab			Relative Ma	SS								\sim	DE
															CR		KE

NEXT STEPS: INTEGRATION OF GRADE ENGINEERING LEVERS

Industry is now generating datasets to enable multiple GE levers to be investigated and deployed in multiple configurations

Now have the ability to run what if scenarios based on real Grade Engineering data

Enables early evaluation of what is the best options to investigate

Integrated Screening and Particle Sorting

Particle sorting trials commonly have two flaws:

- failure to consider the benefit of grade by size assessment before sorting
- bias can exist in particle sorting testing undertaken by a vendor
- currently there is no independent industry framework for assessing an ISPS flowsheet

The ISPS project will provide a new industry framework for independently assessing an ores amenability to an integrated grade by size and particle sorting flowsheet.

\$1.3M Project across 5 gold and nickel operations around Kalgoorlie

CEEC MINERAL PROCESSING AND INNOVATION WORKSHOP

Taking Grade Engineering from Concept to Production Demonstration

Dr. Luke Keeney CRC ORE Chief Operating Officer

crcore.org.au

Business Cooperative Research Centres Program

