

Water Effects with the Neo-Marvin Orebody - Emerging insights

11/12th June 2025 Communications Session

Global Water Initiative

Whittle Consulting

www.whittleconsulting.com.au

Your Study Team

Whittle Consulting

Craig Davies Melbourne, VIC, Australia

Over three years with Whittle Consulting, Geology and Maths, numerical modeling and programming expert.

Philip Bangerter Brisbane, QLD, Australia

Project manager with 40 years experience; Process Engineer, Sustainability Specialist, Study Manager.

Leigh Lawrence Melbourne, VIC, Australia

Tech Services Specialist. Geologist and Research Scientist.

Gerald Whittle Melbourne, VIC, Australia

CEO. Peer review and Consultant support.

Context & Objectives

CEEC GWI Enterprise Optimisation Case Study

This case study seeks to: • Combine the objectives of the GWI with the notion of Integrated Strategic Planning Promote comparisons between contextulletspecific options for the preservation of water resources.

It is a preliminary meta-study exploring how to model water consumption, treatment & management, and link directly to:

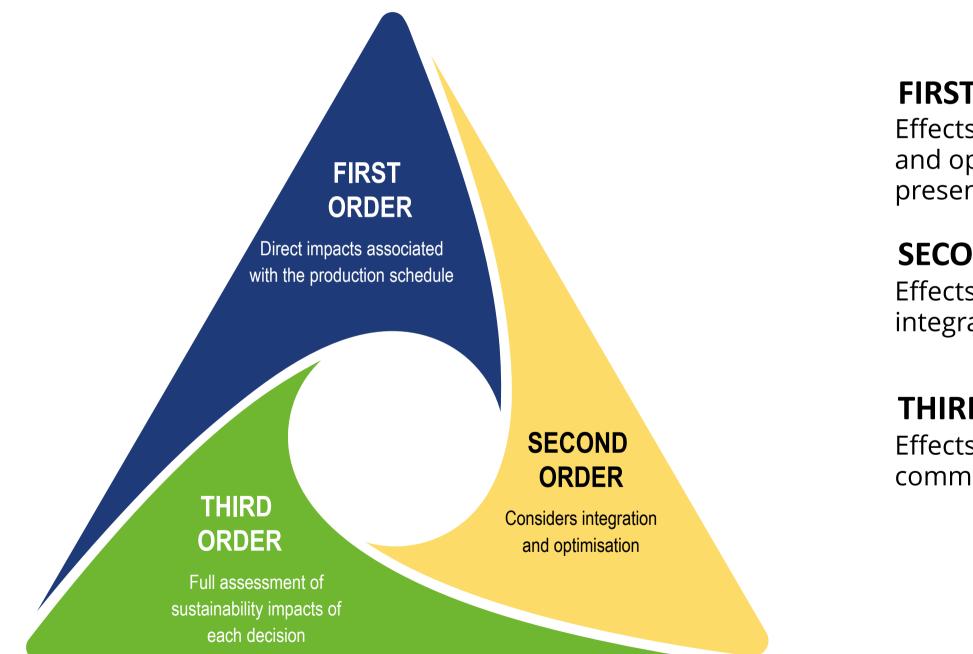
- the LOM plan; •
- the production scale; whilst,
- considering climatic & geological contexts.

There is a link between hydrology and mine planning that is not accounted for in modelling in either discipline; it should be.

> Material changes in water-related costs (infrastructure, treatment, source or coststructure) will have an effect on the size, shape and scheduling of the orebody. (Second-order effects).

> > Material changes motivated by third-order issues (social, environmental) are nonetheless mitigated by such second-order effects.

- 1. Introductions & Context
- 2. Neo Marvin Orebody
- 3. Scenarios and Objectives
- 4. Model synopsis
- 5. First-order Effects
- 6. Second-order Effects
- 7. Outputs and Observations
- 8. The extension work contemplated
- 9. Discussion



Dynamic Influences of Optimisation on Water

How does optimisation play a role?

FIRST ORDER

Effects concerned with assembling capital and operating costs and calculating a netpresent-cost for these

SECOND ORDER

Effects concerned with the orebody as an integrated whole and its optimisation

THIRD ORDER

Effects concerned with environmental and community value or impact

Cost to pump water

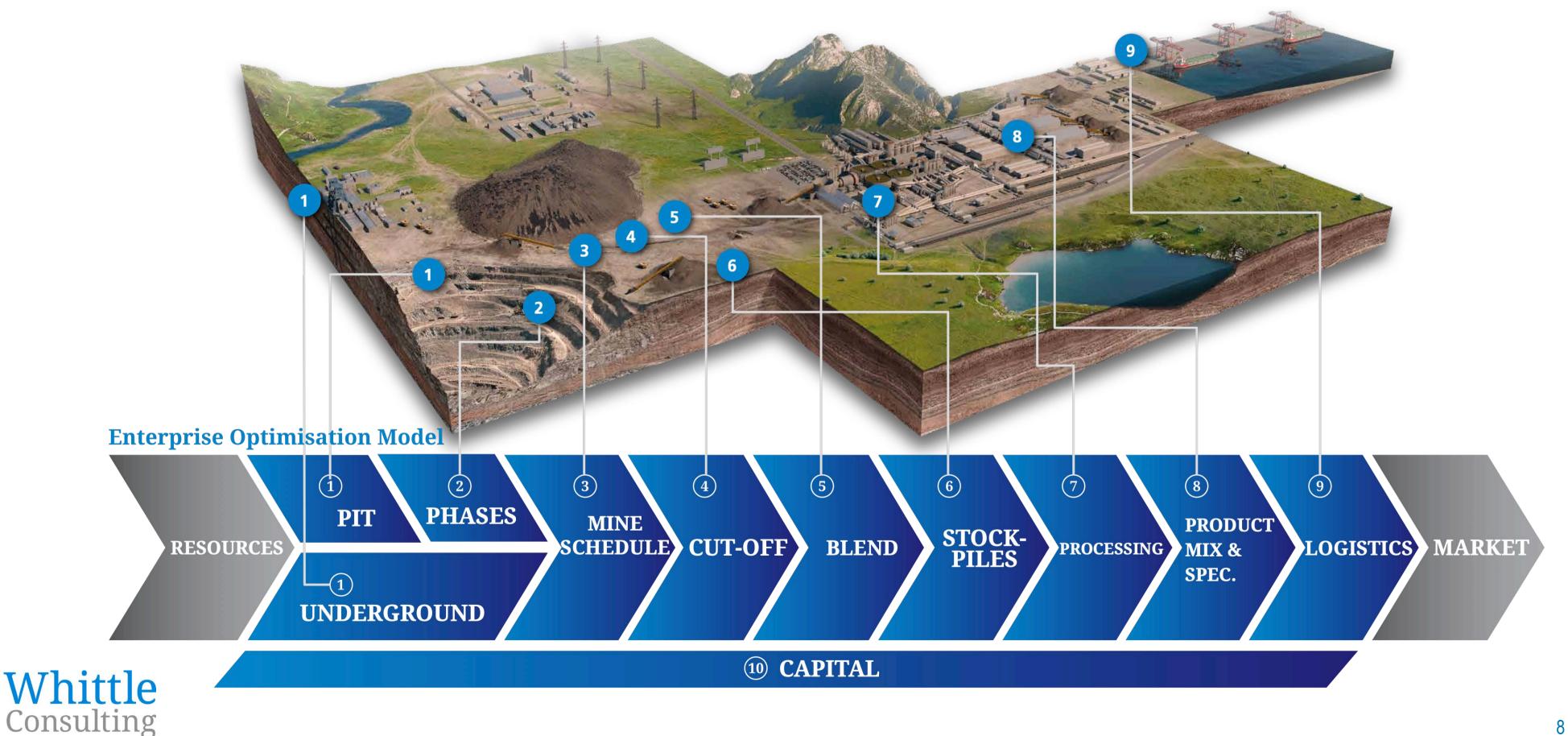
Implications for cutoff grade/value

Carbon Footprint

Narratives for Chilean Desert Archetype

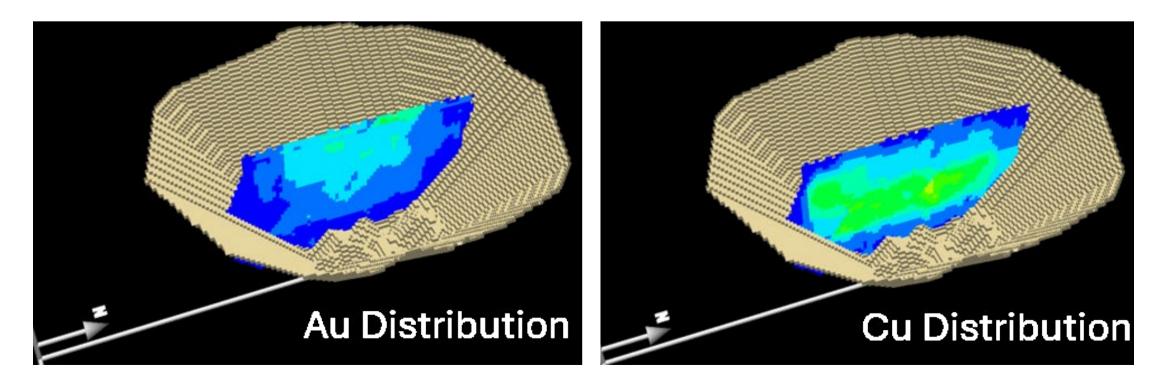
Local water is unavailable or restricted for a New Project

Pumping from the Coast	Water Supply	Tailings Practices
Altitude Distance	Continental Seawater Desalination	Thickening Filtration
Inputs Validation	2 nd -Order Effects	Other
Refinements to assumptions (External)	Mining Pit-shape	Recovery loss with Seawater


Comparison to Aitken et al

Whittle Optimisation Modelling Approach

Neo-Marvin is a Porphyry Cu and Au deposit containing 2.1 Mt of copper and 4.3 M Oz gold. Designed and permitted to process 100 kt per day using locally sourced continental groundwater.


Groundwater access is subsequently extremely limited or completely prohibited.

So what next?

Shelve the mining operation / prospect?

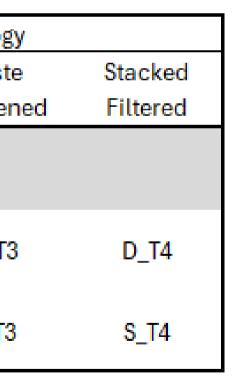
Secure an alternate water source and/or reduce water requirements.

Metrics for success?

	Inside Pit
Total Mass:	1,348 Mt
Ore Mass:	657 Mt
Cu rec:	2,121 kt
Au rec:	4.27 M Oz
Mining Fleet:	90 Mt per annum
Plant:	100kt per day
LOM:	19 years
Nater intensity:	206.65 m ³ per Cu t

So what options do we evaluate?

Water Source: Fresh Groundwater (Base Case), Desalinated Seawater or Raw Seawater.


Tailings Technology: Thickened Low Reclaim (Base Case), Thickened High Reclaim, Paste Thickened, Stacked Filtered.

				Tailings Te	echnolog
			Thickened	Thickened	Past
_			Low Reclaim	High Reclaim	Thicker
		Fresh Groundwater	Base Case (F_T1)		
	Water Source	Desalinated Seawater	D_T1	D_T2	D_T
		Raw Seawater	S_T1	S_T2	S_T

Mine Location: 650masl 80km and 4400masl 165km.

To reduce water consumption

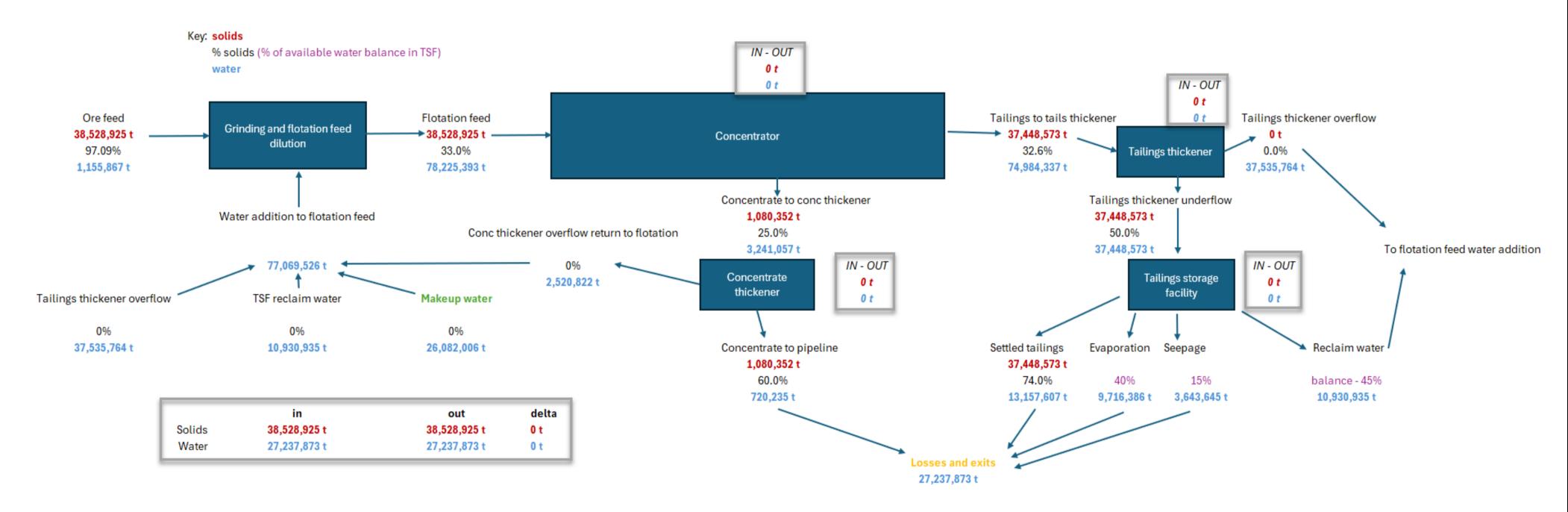
Measuring success?

Mining operation is financially viable NPV

CAPEX Guidance NPV/ CAPEX > 100%

Social Licence to operate

Water intensity Carbon footprint Community impact? Permitting?



Model Inputs

Water Balance Block Flow Diagram

Model Inputs

GWI1 - CEEC Water Case Study Business Model

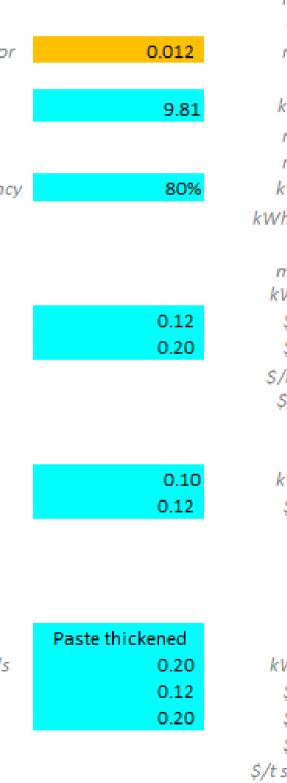
Water assumptions

		v003	Fresh groundwater	Desalinated seawater	Raw Seawater
Density	t/m3	v003	0.997	0.997	1.024
Viscosity	Pa.s	v003	0.0008891	0.0008891	0.0009020
Cu Recovery delta	0-100%	v003	-	-	1.00%
Au Recovery delta	0-100%	v003	-	-	1.00%
Treatment Power	kWh/m3	v004	-	3.00	0.10
Power Price	USD/kWh	v003	0.12	0.12	0.12
Capex	MUSD per (l/s)	v003	0.02	1.00	0.05

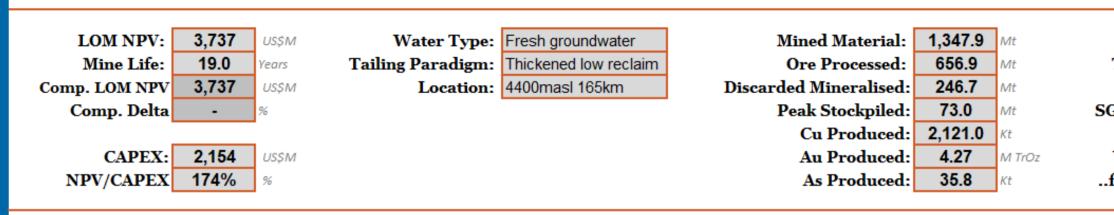
Tailings assumptions

			Thickened low reclaim	Thickened high reclaim	Paste thickened	Stacked Filtered
Tailings thickener Feed	% Solids	v003	33.0%	33.0%	33.0%	33.0%
Tailings thickener UnderFlow	% Solids	v003	50.0%	52.0%	64.0%	52.0%
TSF consolidated	% Solids	v003	74.0%	74.0%	75.0%	85.0%
Evaporation losses	% Water	v003	40.0%	30.0%	25.0%	0.0%
Uncaptured seepage	% Water	v003	15.0%	5.0%	2.0%	0.0%
Tailings Filter cake moisture	% water	v003	50.0%	48.0%	36.0%	15.0%
Dewatering power	kWh/t tails	v003	0.20	0.20	0.20	0.30
Dewatering opex excl. Power	USD/t tails	v003	0.10	0.12	0.20	2.00
Dewatering capex estimate	USD/tpa tails	v003	2.00	2.50	3.00	15.00

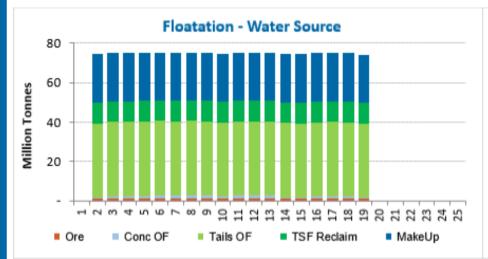
Whittle Consulting

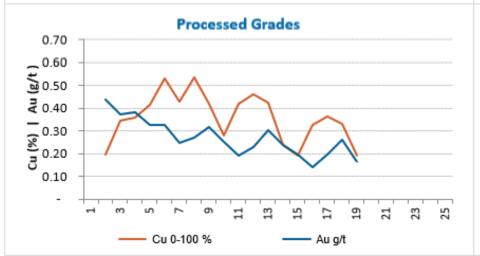

Modelling Calculations - Example

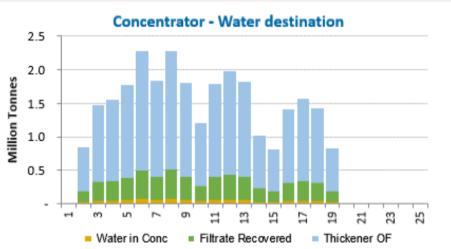
Calculations		
Pipe Diameter	v001	
Reynolds number (Re)	v001	
Friction head	v001	Friction factor
Pumping		
Static head	v001	m/s ²
Friction head	v001	
Total head	v001	
Pumping power	v001	Pump Efficiency
Specific power	v001	
Net make up water requirement	v001	
Pumping power used	v001	
Pumping power cost	v001	\$/kWh
Pumping non-power cost	v005	\$/m3
Pumping unit cost - cubic metre of water	v004	
Pumping unit cost - tonne of ore	v004	
Water Treatment		
Treatment Power	v004	kWh/m3
Treatment Power Cost	v004	\$/kWh
Tails dewatering		
Drivers		
Tailings mass (solids)	v003	
Tailings Paradigm	v003	
Dewatering Power	v003	kWh/t solids
Dewatering Power Cost	v003	\$/kWh
Dewatering Opex excl. Power	v003	\$/t solids
Total tailings Opex	v003	
Tailings Opex unit cost - per tonne of tails solids	v003	

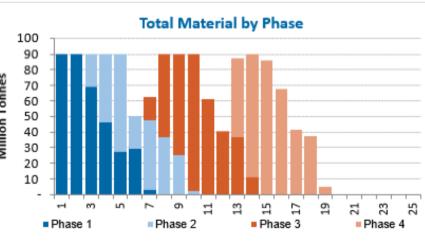


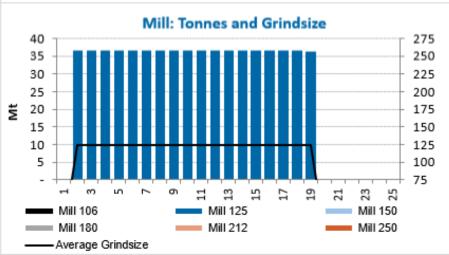
m		0.92
-		1,568,895.83
m		246.46
kw		44,199.94
m		2,475.76
m		46,675.69
kW		58,344.62
Wh/m ³		16.21
m ³		9,434,447.05
kWh		152,902,557.77
Ş	\$	18,348,306.93
Ş	Ş Ş	1,886,889.41
S/m ³	\$	2.145
\$/t	\$	0.525
kW		943,444.71
Ş	\$	113,213.36
t		37,460,576.74
kWh		7,492,115.35
Ş	\$	899,053.84
Ş		7,492,115.35
Ş	\$ \$	8,391,169.19
/t solids	\$	0.224

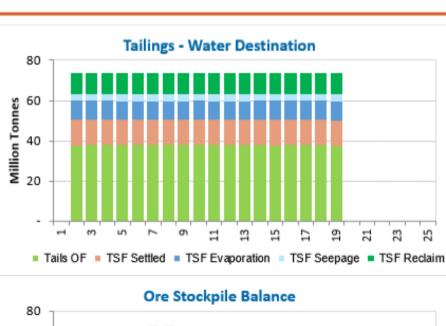


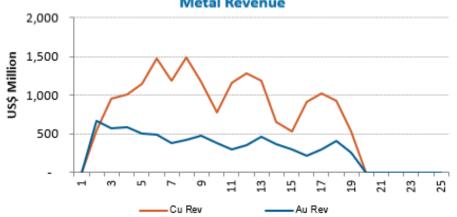



Fresh groundwater - Thickened low reclaim - 4400masl 165km Static grindsize and Concentrate grade

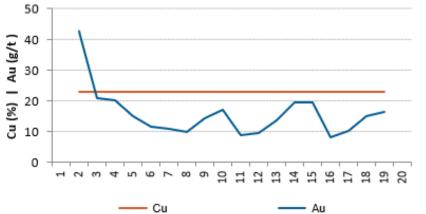

RUN 019_F_T1_L4 DASHBOARD







Whittle Consulting Integrated Strategic Planning for the Mining Industry ----450.0


MakeUp Water	25.82	Mtpa	Water supply OPEX	156.9	MUSD
Tailings Volume	471.32	M m ³	Water treat OPEX	0.0	MUSD
Slurry Density	1.86	t/m³	Tail Dewater OPEX	80.3	MUSD
SG of Dry Tailings	1.37	t/m³	Water supply CAPEX	0.0	MUSD
			Water treat CAPEX	27.0	MUSD
Water Intensity	0.67	m³/Ore t	TSF dewater CAPEX	108.8	MUSD
for Cu produced	206.65	m³/Cut			-

Metal Revenue

In the second

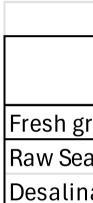
Concentrate Grades

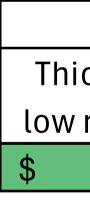
First Order Effects - Revenue

For the purposes of this study using raw seawater causes 1% recovery loss of Cu and Au, it is noted that this may vary wildly based on the mineralogy of the ore body.

Water supply pipeline construction.

Varies primarily with distance


Desalination and Water treatment. Varies with required water mass/volume


Processing Plant and TSF dewatering. Varies with throughput and tails paradigm

The quality of the orebody determines if it can support the Capex (metal price, operational costs, et al.)

8
\$

30km	165km
240	\$ 495

Million USD

		Operating Tailing Paradigm						
Mator	Thickened low reclaim		Thickened		Paste		Stacked	
Water			high reclaim		thickened		Filtered	
groundwater	\$	27						
awater	\$	66	\$	47	\$	26	\$	16
nated seawater	\$	1,208	\$	997	\$	655	\$	443

Operating Tailing Paradigm							
ckened Thickened Paste Stacked							
reclaim	high reclaim thickened Filtered						
109	\$ 136	\$ 163	\$ 815				

First Order Effects – Water Related Opex

Water Supply (including treatment) and dewatering.

Desalination -> varies with water mass/volume.

Water supply pumping -> varies with elevation, mass/volume and power cost.

TSF -> varies with tails volume and tailings paradigm.

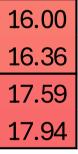
Plant -> varies with throughput and tailings paradigm.

Water treatment -> varies with water quality and mass/volume.

First Order Effects – Water related Opex

Aggregated numbers – Back calculated from Prober model outputs

Water related operating expenses – Per cubic metre (m³) of water


			Operating Tailing Paradigm						
Location	Water	Thic	kened	Thi	ckened	F	Paste		Stack
LUCATION	vvalei	low r	eclaim	high	reclaim	thi	ckened		Filter
Comparison	Fresh groundwater	\$	0.54						
650masl 80km	Raw Seawater	\$	0.70	\$	0.81	\$	1.39	\$	
030111851 00K111	Desalinated seawater	\$	1.06	\$	1.16	\$	1.75	\$	
4400masl 165km	Raw Seawater	\$	2.29	\$	2.39	\$	2.98	\$	
	Desalinated seawater	\$	2.64	\$	2.75	\$	3.33	\$	

Water related operating expenses – Per tonne of processed ore

		Operating Tailing Paradigm							
Location	Water	Thic	kened	Thi	ckened	F	Paste	St	tacked
LUCATION	vvalei	low r	eclaim	high reclaim		thickened		Filtered	
Comparison	Fresh groundwater	\$	0.36						
650masl 80km	Raw Seawater	\$	0.47	\$	0.40	\$	0.35	\$	2.08
030111831 00K111	Desalinated seawater	\$	0.71	\$	0.58	\$	0.44	\$	2.12
4400macl 165km	Raw Seawater	\$	1.53	\$	1.19	\$	0.76	\$	2.28
4400masl 165km	Desalinated seawater	\$	1.76	\$	1.36	\$	0.85	\$	2.33

ked red

Calculated as: The sum of all water related operating expenses over the Life of Mine (including water treatment, water supply and tailings dewatering) divided by the total external water requirements of the system.

Calculated as: The sum of all water related operating expenses over the Life of Mine (including water treatment, water supply and tailings dewatering) **divided by the total** mass of ore material processed.

Lets adjust the current mine plan in a spreadsheet. Desalination Capex looks expensive -> so I'll use raw seawater.

Step #1 - Edit the current schedule outputs to reduce metal recovery by 1% -23.6 kt Cu metal, -57k Oz Au over 19 year LOM.

-\$298MUSD revenue.

-\$130MUSD NPV.

	Net	Net NPV (Millions)							
	Ori	ginal	Adj	ust					
	Cas	se	Rec	overy					
$Net NPV_{10}$	\$	3,737	\$	3,606					
DELTA	-		-\$	130					
Total CAPEX	\$	2,154	\$	2,154					
Water OPEX	\$	237	\$	237					
NPV/CAPEX		174%		167 %					

Step #2 – additional Capital costs, dominantly the water supply pipeline (\$495M) including pumping stations.

Capex increased 27%, directly reducing NPV. Causing a significant reduction on capital returns 174% -> 110%, investing in this operation is now much less appealing.

	Net	NPV (Mi					
	Ori	ginal	Adj	ust	Adjust		
	Case Recovery			overy	Сар	ex	
$Net NPV_{10}$	\$	3,737	\$	3,606	\$	3,018	
DELTA	-		-\$	130	-\$	588	
Total CAPEX	\$	2,154	\$	2,154	\$	2,742	
Water OPEX	\$	237	\$	237	\$	237	
NPV/CAPEX		174 %		167 %		110%	

Step #3 – Apply additional water related Operating costs.

An additional \$1.07 Billion of water related operating costs. Primarily composed of the energy cost of transporting water to site, but also including any additional water treatment costs, tails dewatering costs et al.

	Net	NPV (M	illio	าร)					
	Ori	ginal	Adj	ust	Adj	ust	Adjust		
	Cas	е	Rec	overy	Cap	bex	Opex		
Net NPV ₁₀	\$	3,737	\$	3,606	\$	3,018	\$	2,576	
DELTA	-		-\$	130	-\$	588	-\$	442	
Total CAPEX	\$	2,154	\$	2,154	\$	2,742	\$	2,742	
Water OPEX	\$	237	\$	237	\$	237	\$	1,306	
NPV/CAPEX		174%		167 %		110 %		94%	

Step #4 – Adjust water balance.

Changing from Thickened Low Reclaim tailings paradigm to Paste Thickened reduces make up water requirements at site by ~60% by volume. Reducing water related operating expenses proportionally.

	Net	NPV (M	illior	าร)					
	Ori	ginal	Adj	ust	Adj	ust	Adjust		
	Cas	е	Rec	overy	Cap	ex	Орех		
Net NPV ₁₀	\$	3,737	\$	3,606	\$	3,018	\$	2,576	
DELTA	-		-\$	130	-\$	588	-\$	442	
Total CAPEX	\$	2,154	\$	2,154	\$	2,742	\$	2,742	
Water OPEX	\$	237	\$	237	\$	237	\$	1,306	
NPV/CAPEX		174 %		167 %		110 %		94%	

low	er
wat	er req
\$	2,890
\$	314
\$	2,742
\$	546
	105 %

Adjust the current mine plan – First Order Effects.

Step #5 – New Optimisation / Reschedule.

Our understanding of Revenue and Costs have changed since we initially optimised the schedule, therefore our definition of Ore and Waste have also changed – as these are economic terms.

Rescheduling this mine in Prober makes better decisions on material destination and timing. Increasing NPV by \$65M USD.

	Net	Net NPV (Millions)										
	Ori	ginal	Adj	ust	Adjust		Adjust		lower			
	Cas	e	Rec	overy	Cap	bex	Op	ex	wat	ter req	Res	chedule
$Net NPV_{10}$	\$	3,737	\$	3,606	\$	3,018	\$	2,576	\$	2,890	\$	2,955
DELTA	-		-\$	130	-\$	588	-\$	442	\$	314	\$	65
Total CAPEX	\$	2,154	\$	2,154	\$	2,742	\$	2,742	\$	2,742	\$	2,702
Water OPEX	\$	237	\$	237	\$	237	\$	1,306	\$	546	\$	499
NPV/CAPEX		174 %		167 %		110 %		94 %		105 %		109 %

Step #6 – Create new Pits, and re optimise.

As noted in Step 5, Revenue and costs have changed since we initially ran a pit and phase optimisation.

The new final Pit is 7% smaller (total mass 1.35Mt -> 1.26Mt), and contains 5% less ore (0.66Mt -> 0.63Mt). Reducing LOM by 10.5 months (from 19.1 years to 18.2 years).

Water OPEX per	Operating Tailing Paradigm								
Location	Mator	Thic	kened	Th	ickened	F	Paste		tacked
Location	Water	low reclaim		high reclaim		thickened		Filtered	
Comparison	Fresh groundwater	\$	0.36						
650masl 80km	Raw Seawater	\$	0.47	\$	0.40	\$	0.35	\$	2.08
00011181 00111	Desalinated seawater	\$	0.71	\$	0.58	\$	0.44	\$	2.12
4400macl 165km	Raw Seawater	\$	1.53	\$	1.19	\$	0.76	\$	2.28
4400masl 165km	Desalinated seawater	\$	1.76	\$	1.36	\$	0.85	\$	2.33

This is a significant change from adding 40 cents per ore tonne into the mining optimization.

Step #6 continued

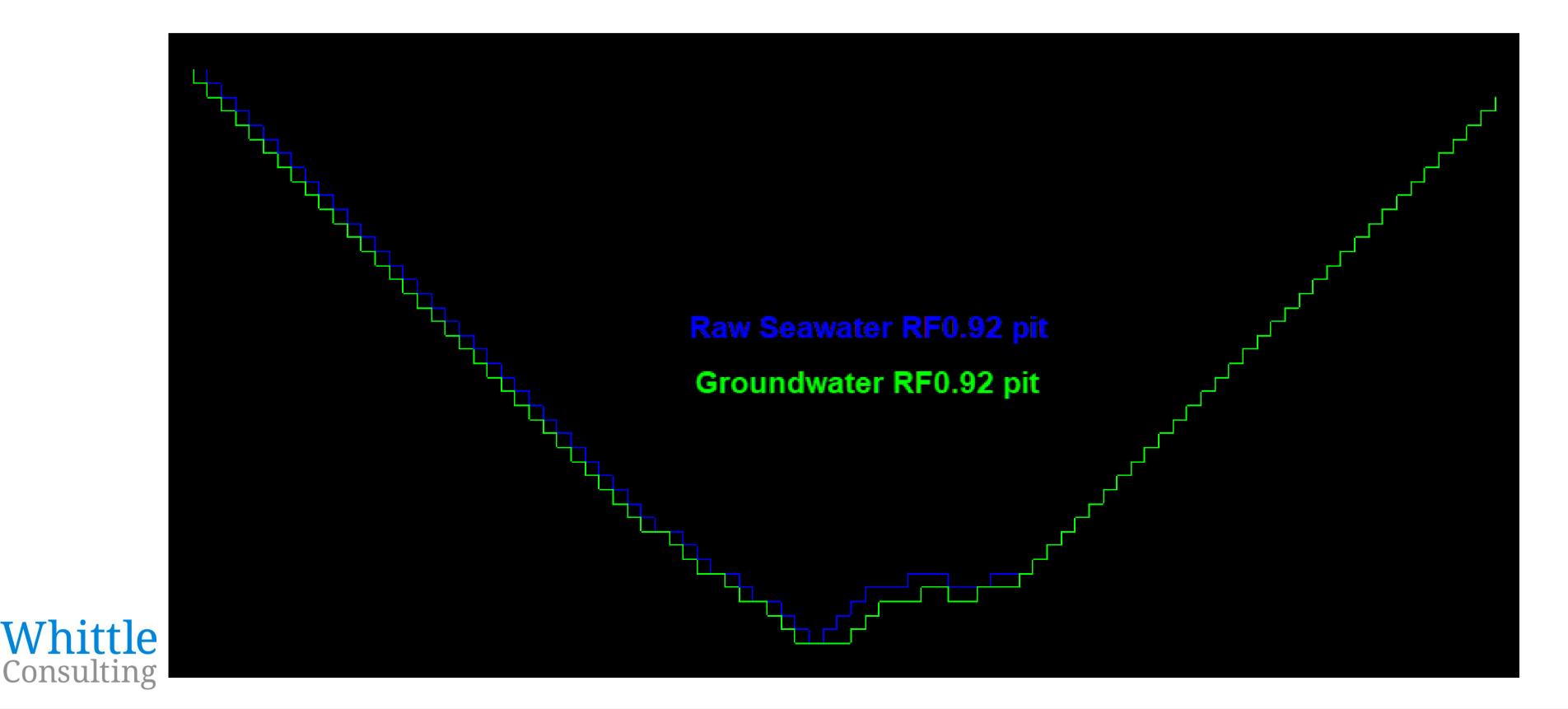
NPV is surprisingly unchanged, within 0.28% of previous model.

Compared to Step #5

3.7% less Cu produced. 2.6% less Au produced.

~8.2% reduced carbon footprint.

4.8% less water required over LOM.


1.1% reduction in water intensity per tonne of copper.

4.8% reduction in total tailings volume.

Create a new mine plan – Second Order Effects

Image of the difference between final pit shells.

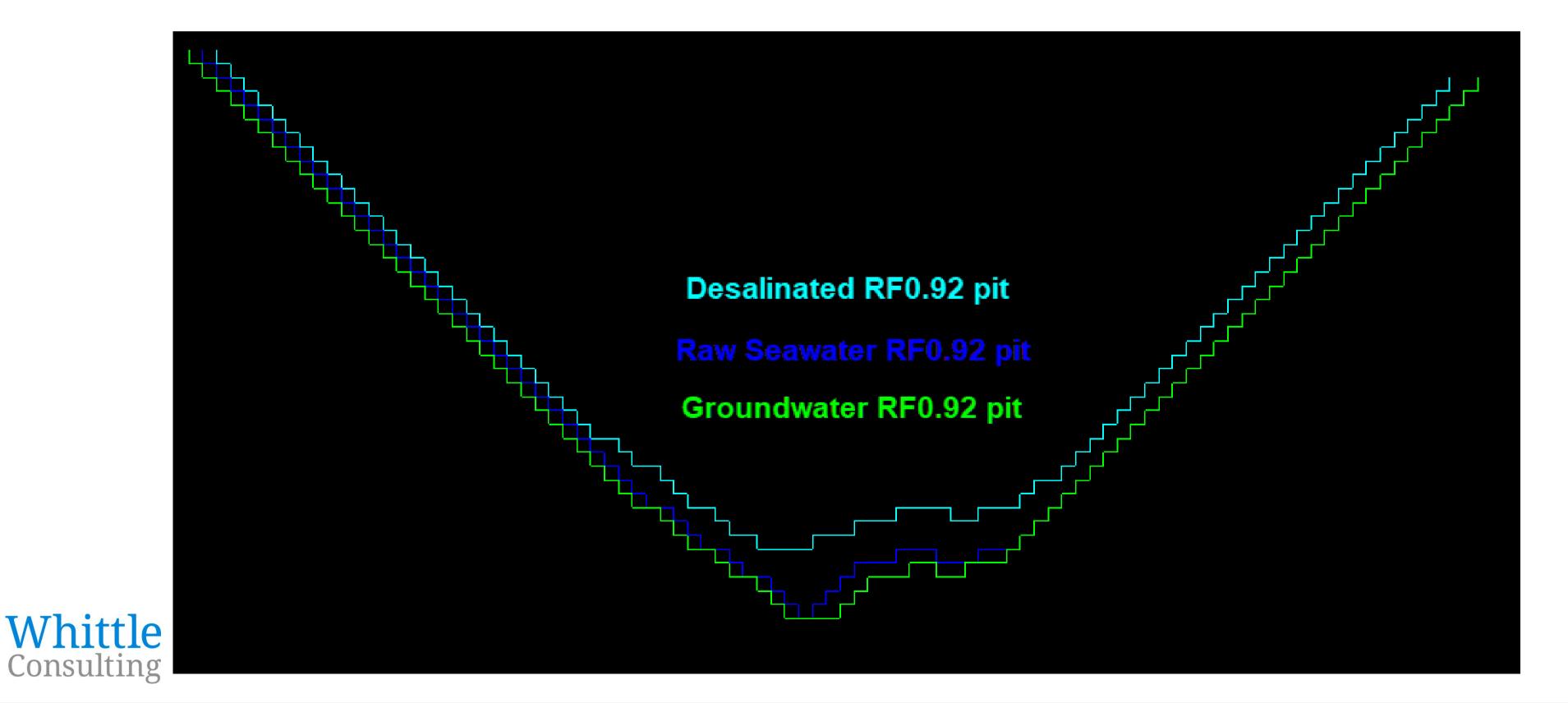
Create a new mine plan – Second Order Effects

Whittle Consulting

Bonus Points

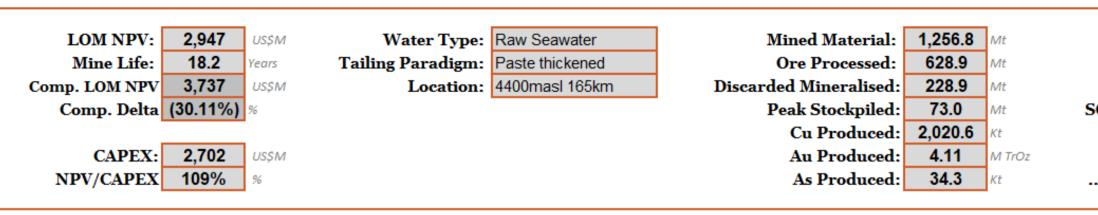
If +\$0.40 opex per ore tonne reduced total inpit rock mass by 7% what is the impact of Stacked filtered tailings?

Adding \$1.97 to the opex per ore tonne. Reduced TMM 16.4% and ore mass by 15.3%. Reduced metal production, Cu by 12% and Au by 9%.

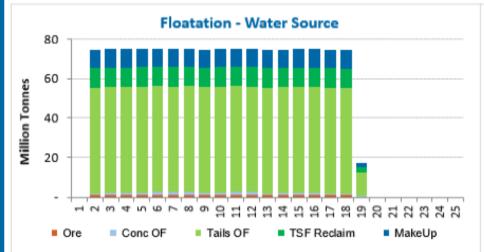

Water OPEX per	Operating Tailing Paradigm								
Location	Mator	Thickene		Th	ickened	Paste		St	acked
Location	Water	low reclaim		high reclaim		thickened		Filtered	
Comparison	Fresh groundwater	\$	0.36						
650masl 80km	Raw Seawater	\$	0.47	\$	0.40	\$	0.35	\$	2.08
00011181 00111	Desalinated seawater	\$	0.71	\$	0.58	\$	0.44	\$	2.12
4400masl 165km	Raw Seawater	\$	1.53	\$	1.19	\$	0.76	\$	2.28
	Desalinated seawater	\$	1.76	\$	1.36	\$	0.85	\$	2.33

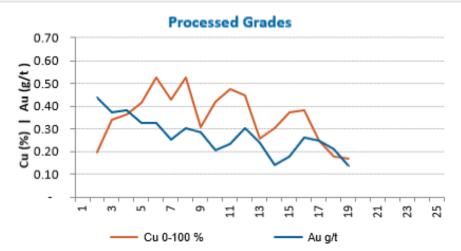
Bonus Points

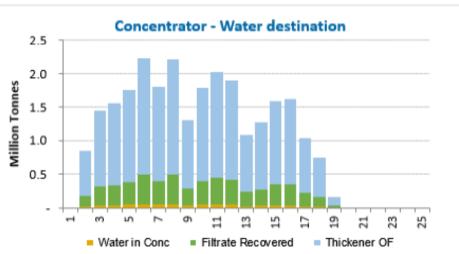
Image of the difference between final pit shells.

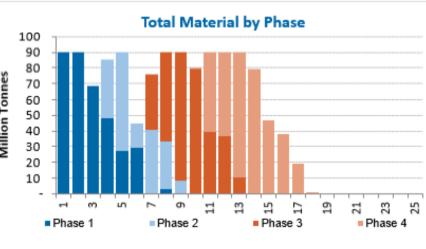


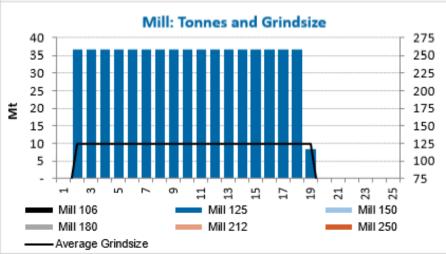
Case	Net NPV	CAPEX	NPV/CAPEX	Mine Life:	Water OPEX	Water CAPEX	Water Total	Mined Material:	Ore Processed:
	MUSD	MUSD	0-100%	Years	Undis	scounted M	USD	Mt	Mt
Original Case	3,736.6	2,153.6	174%	19.0	237	136	373	1348	656.9
Adjust Recovery	3,606.3	2,153.6	167%	19.0	237	136	373	1348	656.9
Adjust Capex	3,018.1	2,741.7	110%	19.0	237	724	961	1348	656.9
Adjust Opex	2,575.7	2,741.7	94%	19.0	1306	724	2029	1348	656.9
lower water req	2,890.1	2,741.7	105%	19.0	546	724	1270	1348	656.9
Reschedule	2,954.9	2,702.1	109%	19.1	499	684	1184	1348	660.8
New Pits	2,946.6	2,702.1	109%	18.2	475	684	1159	1257	628.9

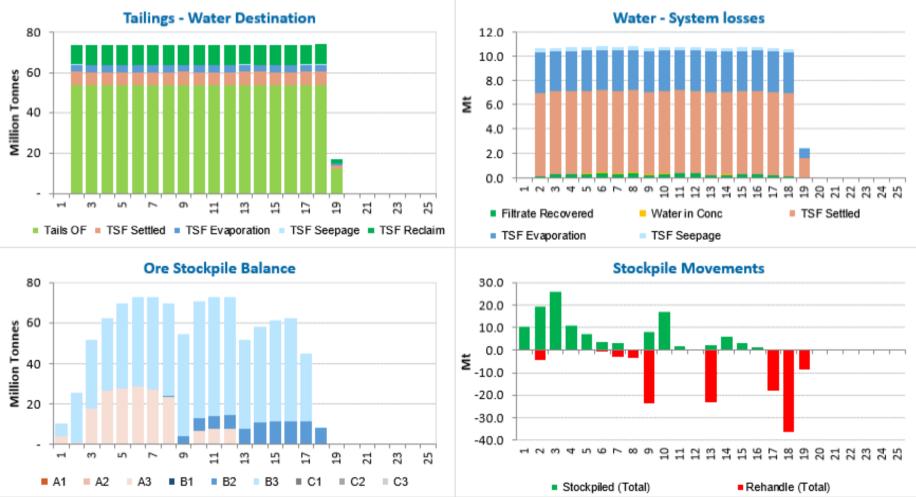


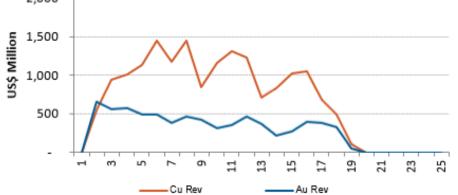


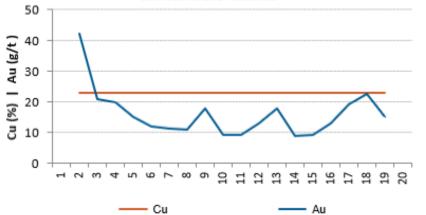

Raw Seawater - Paste thickened - 4400masl 165km Static grindsize and Concentrate grade


RUN 021_S_T3_L4 DASHBOARD



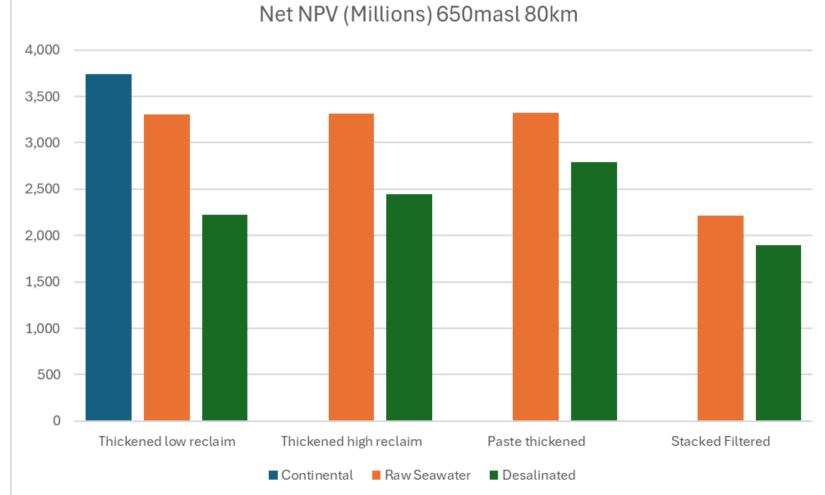





Whittle Consulting Integrated Strategic Planning for the Mining Industry

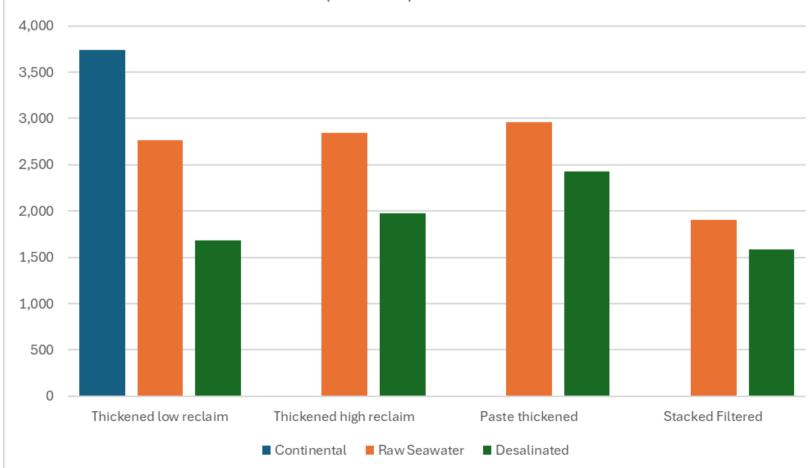
MakeUp Water	10.27	Mtpa	1
Tailings Volume	346.34	M m ³	
Slurry Density	2.13	t/m³	,
SG of Dry Tailings	1.79	t/m³	W
Water Intensity	0.25	m ³ /Ore t	Т
for Cu produced	78.99	m ³ /Cut	

Water supply OPEX	334.3	MUSD
Water treat OPEX	1.9	MUSD
Tail Dewater OPEX	138.9	MUSD
Vater supply CAPEX	495.0	MUSD
Water treat CAPEX	26.3	MUSD
FSF dewater CAPEX	163.1	MUSD


Metal Revenue

Concentrate Grades

Outputs – 650masl 80km


Net NPV	CAPEX	NPV/CAPEX	Water Type:	Tailing Paradigm:	Water OPEX	Water CAPEX	Water Total	Water intensity Ore	Water intensity Cu
MUSD	MUSD	0-100%			MUSE) Undiscoul	nted	m ³ / ore t	m ³ /cut
3,736.6	2,153.6	174%	Fresh groundwater	Thickened low reclaim	237	136	373	0.67	206.6
3,303.7	2,432.4	136%	Raw Seawater	Thickened low reclaim	309	415	723	0.67	208.9
3,314.6	2,441.3	136%	Raw Seawater	Thickened high reclaim	263	423	687	0.50	155.3
3,321.7	2,447.0	136%	Raw Seawater	Paste thickened	232	429	662	0.25	79.6
2,214.4	3,088.4	72%	Raw Seawater	Stacked Filtered	1345	1071	2416	0.13	40.3
2,221.4	3,574.7	62%	Desalinated seawater	Thickened low reclaim	463	1557	2019	0.67	206.2
2,441.4	3,390.9	72%	Desalinated seawater	Thickened high reclaim	379	1373	1752	0.50	153.5
2,792.3	3,075.6	91%	Desalinated seawater	Paste thickened	291	1058	1349	0.25	78.6
1,898.3	3,515.4	54%	Desalinated seawater	Stacked Filtered	1376	1498	2874	0.13	39.9

Whittle Consulting

Outputs – 4400masl 165km

Net NPV	CAPEX	NPV/CAPEX	Water Type:	Tailing Paradigm:	Water OPEX	Water CAPEX	Water Total	Water intensity Ore	Water intensity Cu
MUSD	MUSD	0-100%			MUSI	O Undiscou	nted	m³ / ore t	m ³ /cut
3,736.6	2,153.6	174%	Fresh groundwater	Thickened low reclaim	237	136	373	0.67	206.6
2,761.8	2,687.1	103%	Raw Seawater	Thickened low reclaim	998	669	1668	0.67	208.5
2,843.4	2,698.4	105%	Raw Seawater	Thickened high reclaim	775	681	1456	0.50	154.8
2,954.9	2,702.1	109%	Raw Seawater	Paste thickened	499	684	1184	0.25	79.7
1,901.6	3,343.4	57%	Raw Seawater	Stacked Filtered	1479	1326	2804	0.13	40.3
1,681.9	3,826.4	44%	Desalinated seawater	Thickened low reclaim	1150	1809	2959	0.67	205.8
1,977.5	3,640.8	54%	Desalinated seawater	Thickened high reclaim	888	1623	2511	0.50	152.9
2,427.9	3,330.6	73%	Desalinated seawater	Paste thickened	555	1313	1868	0.25	78.6
1,586.9	3,770.1	42%	Desalinated seawater	Stacked Filtered	1508	1752	3260	0.13	39.9

Whittle Consulting Net NPV (Millions) 4400masl 165km

NPV/CAPEX	Thickened low reclaim	Thickened high reclaim	Paste thickened	Stacked Filtered					
E 650masl 80km									
Fresh groundwater	174%								
Desalinated seawater	62%	72%	91%	54%					
Raw Seawater	136%	136%	136%	72%					
E 4400masl 165km									
Fresh groundwater	174%								
Desalinated seawater	44%	54%	73%	42%					
Raw Seawater	103%	105%	109%	57%					

Mine optimisation is complicated and dynamic (ideally).

You have to do the work, for that specific orebody.

All these outcomes are guided by the choice of metrics that are important to the company's board.

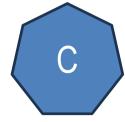
In the economic evaluation of water supply, it is not sufficient to stop at the first-order items; second-order has sufficient effects to influence decisions.

This work is a step towards a fuller integration of water into the mine planning processes; there is more....

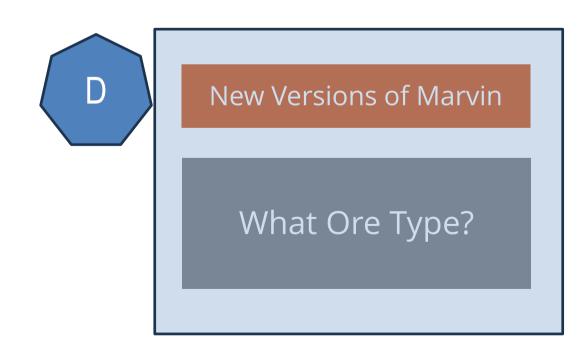
Scope Extension Ideas – what to tackle next

Processing (GTR) PAG vs NAG New Climatic Loc. Moly. Sensitivity Cu & Au Price Pre-concentration Flowsheet or Technology Options

e.g. Coarse Particle Flotation and/or Hydraulic Dewatered Stacking

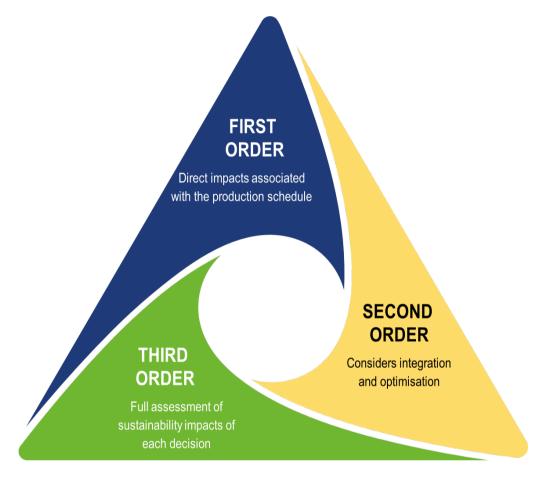

Existing Operation

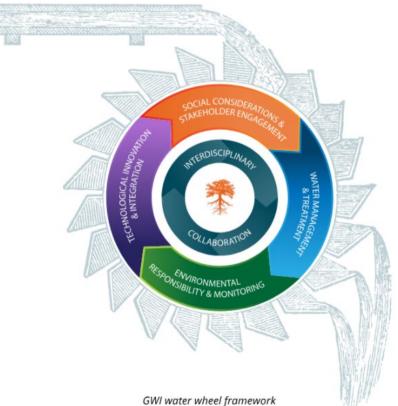
Depleted Orebody Looming Restrictions


- Close (or C&M)?
- Scale Back?
- Change Supply?
- Change Tails de-water?

Whittle Consulting

Link to Hydrology Models


Catchment Footprint; River Diversion; Pit Boundaries; Lake Interactions; Pit-dewatering etc



Discussion & Questions

Thanks to CEEC Sponsors & Partners of GWI

Whittle Consulting

Sustainable Minerals Institute SM

Grantham Foundation

for the Protection of the Environment