

Energy Efficiency Comparison in Fine Grinding in the Mining Industry

Michel Brissette, M.Sc.A., Ing. VP Metallurgy John Starkey, B.Sc.A., P. Eng. Predident

November 13th, 2013

Outline

- 1. Fine Grinding Market
- 2. Ball Mill : 25 mm versus Small Media
- 3. Ball Mill versus Isamill
- 4. Ball Mill versus Vertical Stirred Mill

SAGDesign.com

5. Industrial Scale-Up

TESTING INTERACTION

Who hates being asked questions by speakers?

TESTING INTERACTION

Fine Grinding Growth Trend

Total of nearly 900 MW installed power – not all listed

Starkey & Associates

Fine Grinding Technologies

Installed Power

- Xstrata Isamill 202 MW (116 Units)
- Metso SMD 57.4 MW (184 Units)
- FLSmidth VXP Mill 2.9 MW (9 Units)
- Metso Vertimill 263.2 MW (393 Units)
- Eirich Tower Mill 38.3 MW (262 Units)
- Outotec HIG Mill 336 MW (209 Units)
- 350 SMD units missing from former manufacturer...
- ... over 1523 units installed world wide.

Starkey & Associates

Fine Grinding Technologies

Industry

SAGDesign.com

Fine Grinding Technologies

Mining Industry

Starkey & Associates

Power Reduction (kW)

Wear Rate $\left(\frac{gr}{kWh}\right)$

Grinding Media #1 36.8 gr/kWh

Grinding Media #2 62.0 gr/kWh

SAGDesign.com

What is the more important?

Power Reduction (kW)?

Wear Rate $\left(\frac{gr}{kWh}\right)$?

SAGDesign.com

Brunswick Mine (1964-2013)

Brunswick Mine (1964-2013)

3 Months Performa	Secondary Ball Mill			
Media	Unit	25mm	Millpebs	
Running Hours	h	1 737.8	1 737.8	
Underflow K80	μm	102	102	
Discharge D80	μm	72	73	
Power	kW	905	525	
Tonnage	TPH	113	113	
Energy	kWh/t	8,01	4,65	
Total Added Media	kg	173 600	169 290	
Average	t/month	57.9	56.4	

Power was reduced by 42%

How many of you think the consumption is different?

Starkey & Associates

Wear Rate for Unknown TPH (gr/kWh)

 $WR = \frac{Total Added Media (gr)}{Total Hours (h)} \times \frac{1}{Power (kW)}$

25 mm Media

$$WR_{25mm} = \frac{173\ 600\ kg \times 1000}{1\ 737.8\ h} \times \frac{1}{905\ kW} = \frac{33.8\frac{gr}{h}}{905\ kW} = 36.8\frac{gr}{kW}$$

Small Media (5-12mm)

Starkey & Associates

$$WR_{25mm} = \frac{169\ 290\ kg \times 1000}{1\ 737.8\ h} \times \frac{1}{525\ kW} = \frac{32.5\frac{gr}{h}}{525\ kW} = 62.0\frac{gr}{kW}$$

« There is no such thing as a technical optimum. The Optimum is always defined by economics. »

McIvor (1989), Metcom GPD – Module 1

Annual Cost with 92% Availability

Media	Unit	25mm	Millpebs
Power Draw	kW	3,350	2,010
Running Hours	h/year	8,059	8,059
Energy Consumption	MWh/year	27,000	16,200
Grinding Media Consumption	t/year	2,735	2,735
Energy Pricing	CAD/kWh	0.045	0.045
Grinding Media Pricing	CAD/t	1,000	1,250
Energy Cost	kCAD/year	2,736	3,078
Grinding Media Cost	kCAD/year	1,215	729
Total Cost	kCAD/year	3,951	3,807

Annual Savings of nearly 143,000 CAD/year

SAGDesign.com

Annual Cost with 92% Availability

Media	Unit	25mm	Millpebs
Power Draw	kW	3,350	2,010
Running Hours	h/year	8,059	8,059
Energy Consumption	MWh/year	27,000	16,200
Grinding Media Consumption	t/year	2,735	2,735
Energy Pricing	CAD/kWh	0.200	0.200
Grinding Media Pricing	CAD/t	1,000	1,250
Energy Cost	kCAD/year	2,736	3,078
Grinding Media Cost	kCAD/year	5,400	3,240
Total Cost	kCAD/year	8,136	6,318

Annual Savings of more than 1,800,000 CAD/year

SAGDesign.com

What is the most energy efficient technology?

Conventional Ball Milling

Ball Mill? Vertical Stirred Mill?

Starkey & Associates

Vertimill

- A vertical mill was drawing 43% less power than a ball mill
- Small media was 30% more efficient than 25mm balls in VSM
- The new Vertimill with 25mm media was 60% more efficient than the ball mill

SAGDesign.com

Potential power reduction of vertical stirred mill with small media is 72% in compared to ball mill with 25 mm balls

SAGDesign.com

		Ball Mill	Vertimill	Vertimill
Media	Unit	25mm	25mm	Millpebs
Power Draw	kW	3,350	2,010	940
Running Hours	h/year	8,059	8,059	8,059
Energy Consumption	MWh/year	27,000	16,200	7,576
Media Consumption	t/year	2,735	2,735	2,735
Energy Pricing	CAD/kWh	0.200	0.200	0.200
Grinding Media Pricing	CAD/t	1,000	1,250	1,250
Energy Cost	kCAD/year	2,736	2,736	3,078
Grinding Media Cost	kCAD/year	5,400	3,240	1,515
Total Cost	kCAD/year	8,136	5,976	4,593

Actual annual savings is 2.16 M CAD/year

Additional savings of 1.38 M or total of 3.5 M CAD/year

Starkey & Associates

Ball Mill versus Isamill

What is the most energy efficient technology?

Conventional Ball Milling

Ball Mill? Isamilling?

Ball Mill versus Isamill

Kumtor Mine (Kyrgyz Republic) Regrind Ball Mill Ø16¹⁄₂' x 35' EGL

Mill	Media	kW	TPH	kWh/t	F80	P80	Overflow	WOI
					μm	μm	%-20 μm	
ISA	21⁄2-31⁄2mm	1885	80,0	23,4	135	62	N/A	
RGD Before	25mm	3717	88,2	42,1	129	19	88,0%	
RGD Trial	25%Mpbs	3333	135,0	24,7	130	<19	90,1%	
RGD After	25mm	3895	119,0	32,7	-	-	87,8%	

SAGDesign.com

- Pease et al. (2006). Autogenous and Inert Milling using the Isamill, SAG 2006 Conference Proceedings, Ed: Allan, Major, Flintoff, Klein & Mular, Vol. II, pp. 231-245.
- ISA mill shows some potential for regrind application...
- ...but small media in a ball mill shows the same potential (Δ=5.5%)

Ball Mill versus Isamill

Kumtor Mine (Kyrgyz Republic) Regrind Ball Mill Ø16¹⁄₂' x 35' EGL

Mill	Media	kW	TPH	kWh/t	F80	P80	Overflow	WOI
					μm	μm	%-20 μm	
ISA	2½-3½mm	1885	80,0	23,4	135	62	N/A	57,6
RGD Before	25mm	3717	88,2	42,1	129	19	88,0%	29.8
RGD Trial	25%Mpbs	3333	135,0	24,7	130	<19	90,1%	16,7
RGD After	25mm	3895	119,0	32,7	-	-	87,8%	-

- Based on WOI, small media in a ball mill gives better energy efficiency than the ISA Mill
- Regardless, fine grinding equipment can be as inefficient as a ball mill if not operated properly.
- All your annual savings are gone!

Industrial Scale-Up

Roitto, I., Lehto, H., Paz, A. & Astholm, M. (2013). *Stirred Milling Technology – A New Concept in Fine Grinding,* AusIMM MetPlant 2013, Perth, Australia, pp.190-201. Larson, M., Anderson G., Barns, K., Villadolid, V. (2013). *IsaMill 1:1 Direct Scaleup from Ultrafine to Coarse Grinding,* MEI Comminution 2012, April 19th 2012, Cape Town, South Africa.

SAGDesign.com

- 1. Work in progress by all manufacturers.
- 2. What about the operating conditions & efficiency?

Grinding testwork measures the kWh/t required to get P80

Mill Power Draw Calculation

Power equations are used to size mills

Nordberg Brochure circa 1970

Power draw (HP) = A*B*C*D

SAGDesign.com

- A = Diameter factor = $0.1765 \times ID^{2.5}$ (ft.)
- B = Load factor (SAG = 4, BM = 5 dependent on charge, SG, and weight)
- C = Speed factor = 0.1838 for 75% critical
- D = EGL in feet

Industrial Scale-Up

Power equations with Small Grinding Media

Media & Filling Degree Measured	DCS	Morrell	Allis- Chalmer	Nordberg
25mm Slugs @ 33.0%	910 kW	1,007 kW	916 kW	880 kW
Millpebs @ 26.8%	575 kW	872 kW	785 kW	786 kW

1. Calculated power of ball mill do not match with industrial measurement when using small media

SAGDesign.com

 Power equation exists for vertical stirred mill (JKTech Mineral Comminution Circuits)

Conclusion

- 6 fine grinding technologies are available from 5 manufacturers with over 1523 units representing 900 MW installed worldwide.
- 2. Ball mill power can be reduced significantly in fine grinding reducing the OPEX in remote area.
- 3. Fine grinding technology can reduce the OPEX further, CAPEX to be compared.
- 4. However, if not used properly, the FG performance can be inefficient, losing the OPEX savings.
- Improvement continues for industrial scale-up but power models need to be developed for design purposes.

SAGDesign.com

Further Development

- 1. Starkey & Associates is looking to have all those new fine grinding technologies in pilot station in Quebec.
- 2. We will have both steel and ceramic grinding media available for testing.
- 3. First step is to reproduce the industrial scale in pilot station to determine best operating conditions and develop power equations.

SAGDesign.com

4. Second step is to develop a fine grinding test for laboratory bench scale.

Acknowledgements

All manufacturers to have provided the installation list of their fine grinding equipment.

Thank you! Questions?

